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Abstract
Summary: Xenograft models are attractive models that mimic human tumor biology and permit one to perturb the tumor microenvironment 
and study its drug response. Spatially resolved transcriptomics (SRT) provides a powerful way to study the organization of xenograft models, 
but currently there is a lack of specialized pipeline for processing xenograft reads originated from SRT experiments. Xenomake is a standalone 
pipeline for the automated handling of spatial xenograft reads. Xenomake handles read processing, alignment, xenograft read sorting, and 
connects well with downstream spatial analysis packages. We additionally show that Xenomake can correctly assign organism-specific reads, 
reduce sparsity of data by increasing gene counts, while maintaining biological relevance for studies.
Availability and implementation: Xenomake is an open-source program that is available on Github (https://github.com/qianzhulab/Xenomake). 
Complete documentation can be found at the link.

1 Introduction
Xenograft models, including patient derived xenografts 
(PDXs) and cell line xenografts, are a widely used compo
nent of cancer research for understanding tumor/stroma 
interactions, screening drug therapeutics, and simulating 
human tumor biology to understand cancer progression 
and therapy resistance (Hidalgo et al. 2014, Dobrolecki 
et al. 2016, Liu et al. 2023). With the rising popularity of 
spatially resolved transcriptomic (SRT) technologies, there 
is a growing need for processing pipelines that can handle 
reads from PDX samples. Sequencing experiments from a 
PDX sample often contains a mixture of reads originating 
from both the host and graft genomes. A unique challenge 
is unambiguously assigning mRNA reads as belonging to 
host and graft transcriptomes (Woo et al. 2019). This prob
lem is especially prevalent because in order to develop into 
a viable xenograft, the host and graft organisms must ex
hibit a strong degree of homology (Batzoglou et al. 2000), 
which often leads to ambiguous mapping of reads to either 
organism (Woo et al. 2019). Currently, there are no desig
nated tools or options in standard spatial pipelines to han
dle reads from PDX samples.

Previously, precise methods such as Xenome (Conway 
et al. 2012) and Xengsort (Zentgraf and Rahmann 2021) 
have enabled a sensitive and alignment-free way to classify 
PDX reads as belonging to the graft and host genomes. 

However, these tools have so far worked on bulk samples, 
and they have not been adapted to work on SRT such as 10X 
Genomics Visium (Ståhl et al. 2016, Rodriques et al. 2019). 
Adaptation to single-cell and SRT PDX data would require 
complex workflow modifications that are often beyond the 
capability of an average user. Alternative strategies such as 
Space Ranger (10X Genomics 2023) build an integrated ref
erence assembly containing both host and graft genomes to 
which PDX reads are mapped to the organism with higher 
alignment score. This option however remains untested and 
unevaluated, and is unlikely to work well where there is high 
degree of homology between the host and graft.

To facilitate the adoption of SRT for PDX studies, we thus 
have developed Xenomake, which is an end-to-end pipeline 
that includes read alignment and gene quantification steps for 
xenograft reads generated by spatial transcriptomic platforms 
and uses a xenograft sorting tool to apportion these reads to 
the host and graft genomes. Xenomake (https://github.com/ 
qianzhulab/Xenomake) is written based on Snakemake 
(K€oster and Rahmann 2012, M€older et al. 2021) and is fully 
open source. We evaluate Xenomake by conducting compari
sons to show the superiority of our tool. Throughout, we 
demonstrate the application of Xenomake on a newly gener
ated triple-negative breast cancer (TNBC) PDX spatial 
transcriptomic (ST) dataset, as well as on a published medul
loblastoma PDX ST dataset.
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2 Description
Xenomake is a xenograft reads sorting and processing pipeline 
adapted for SRT data. It consists of the following steps: read 
tagging/trimming, alignment, annotation of genomic features, 
xenograft read sorting, subsetting bam, filtering multi mapping 
reads, and gene quantifications (Fig. 1a, Supplementary 
Fig. S1). The input is paired-end FASTQ files. In the first step, 
spatial barcodes and UMI information are extracted from indi
vidual reads from FASTQ files and tagged to the reads to gener
ate an unaligned tagged BAM file. Then, the reads are 
independently aligned to the host and graft genomes using 
STAR (Dobin et al. 2013). Reads that are simultaneously 
aligned to both genomes (called overlapping aligned reads) are 
next extracted and are subject to Xengsort K-mer tool 
(Zentgraf and Rahmann 2021) to classify them as belonging to 
host, graft, both, ambiguous, and neither categories. Reads in 
the host and graft categories are added back to the respective 
BAM files, while both/ambiguous undergoes further classifica
tion. The final step of the pipeline performs read multimapping 
handling and gene expression quantification from BAM files 
(Fig. 1a, Supplementary Fig. S1). The outputs are two spatial 
barcode-by-gene expression matrices for the host and the graft 
transcriptomes. For our purpose, the host refers to mouse, and 
the graft refers to human, as this is the common setup for PDX.

As Xengsort is performed post-alignment, no further align
ment is necessary—the sorted reads and their corresponding 
alignments are added to the organism’s BAM file for quantifi
cation. For both/ambiguous (i.e. outputs of Xengsort), reads 
in these categories are often ignored and removed, but 
Xenomake adopts a flexible strategy to make reads in these 
categories usable, rather than removing them. Because the 
alignment location is provided for every read, our tool uses 
the genomic location of alignment (exonic, intronic, inter
genic, or pseudogene) to determine the best location of a both/ 
ambiguous multi-species read. For such a read, Xenomake 
favors the species with exonic alignment over species with 
intergenic, pseudogenic, and any other secondary alignments.

3 Results
To illustrate the capability of Xenomake, we generated an ST 
dataset for a previously characterized TNBC PDX model 
PIM001P (Echeverria et al. 2019, 2018) generated from a 
treatment naive TNBC patient who went on to exhibit thera
peutic resistance and aggressive disease progression (see 
Supplementary Material).

Application of Xenomake returns 213 million human- 
aligned reads and 15 million mouse aligned reads (Fig. 1b). Of 
these, 168 million (78%) human reads and 10.8 million 
(72%) mouse reads are uniquely aligned to each organism. 
Xenomake conducts xenograft sorting on the 49.5 million 
shared aligned reads to further assign them to the source or
ganism. This resulted in an overall improvement of 26.8% 
more aligned reads being assigned to human and 40.6% for 
mouse (Fig. 1b), compared to counting just reads uniquely 
mapped to each species (without leveraging xenograft sort
ing). We next overlayed the results to spatial positions 
(Fig. 1c). We were able to partition the TNBC PDX sample 
into mouse stroma- and human epithelial-rich regions (Fig. 1c 
output), with the mouse stroma surrounding the tumor. This 
is indicative of an invasive front that is enriched in mouse 
CAF populations marked by Acta2 and Pdgfra expression.

In a similar fashion, we also analyzed a recent SRT dataset 
focused on medulloblastoma PDX (Vo et al. 2023) samples 
in the control and palbociclib-treated setting (Supplementary 
Fig. S2). We similarly observed a clear division of mouse 
stroma-rich and human epithelial-rich regions, resembling 
the annotations from the paper (Vo et al. 2023).

3.1 Comparison with other tools
Space Ranger, a tool for processing 10X Genomics derived SRT 
samples, has been suggested to handle PDX analysis by aligning 
reads to the mouse-human integrated genome. In our compari
son between Xenomake and Space Ranger (with the integrated 
genome option) on the TNBC, Xen omake mapped a total of 
17 126 human genes, and 14 647 mouse genes among 2217 in- 

Figure 1. Xenomake pipeline and provided analyses. (a) Pipeline overview. Details are presented in Supplementary Fig. S1. (b) Xenomake statistics on a 
TNBC PDX SRT dataset. (c) Overview of input and outputs. Application on TNBC is shown. Using the outputs, users can visualize the spatial distribution 
of mouse (stroma) and human (epithelium) mRNA reads. (d) Comparison between the tool and Space Ranger in total UMI count (across barcodes) per 
gene. Each dot is a gene. Most genes are distributed below the identity line (black), indicating higher read counts assigned by Xenomake. (e, f) 
Comparison in total genes detected per barcode for each detection criterion: UMI≥ 1, 2, 3, 4, and 5.
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tissue barcodes. The correlation in total UMI count per gene be
tween the two methods is very high (R2>0.98), but Xenomake 
importantly assigns more reads per gene than Space Ranger 
(Fig. 1d). The number of genes detected per spatial barcode is 
increased overall (Fig. 1e and f), and at each detection threshold 
of UMI count≥2, 3, 4, 5, compared to Space Ranger, with the 
differences more prominently exhibited in mouse. Similarly in 
the medulloblastoma PDX, we observed an increase in the num
ber of genes detected per barcode (Supplementary Fig. S3). Of 
note, the increased reads observed in Xenomake is due to the 
use of xenograft sorting to unambiguously assign reads to the 
right organism (72%–85%), and to the improved handling of 
ambiguous/both reads that rescue more reads (15%–28%) 
(Supplementary Fig. S4). Taken together, these results suggest 
that Xenomake reduces the sparsity of the gene expression ma
trix by increasing read counts on a per gene and per spot level.

Furthermore, Xenomake can more accurately attribute to 
the right organism those closely homologous read sequences 
than Space Ranger. To see this point, we focus on analyzing 
the most discrepant genes quantified by the two pipelines 
(Supplementary Fig. S5). Indeed, in the mouse compartment, 
the top 50 genes ranked high in Xenomake (and low in Space 
Ranger) encompass important transcriptional regulators and 
RNA processing genes such as Satb1, Bcl11a, Foxc1, Tox, 
Ptbp2, and Hnrnpd (Supplementary Fig. S5a). Xenomake 
will be beneficial for analyses where these genes are con
cerned. We further validated the Xenomake-high genes by 
checking their expression levels in a single-cell RNAseq 
breast cancer atlas (Supplementary Fig. S5b): 17 genes are 
enriched for stroma cell-type specific expression in endothe
lial cells and myeloid cells in the scRNAseq atlas (see 
Supplementary Fig. S5c red boxes). In contrast, many Space 
Ranger-high mouse genes are also expressed highly, but 
incorrectly, in cancer epithelial cells (see Supplementary 
Fig. S5d blue box), suggesting possible nonspecificity of some 
of Space Ranger output. Indeed, Xenomake generally dis
plays a lower Shannon entropy score, meaning higher cell- 
type specificity, than Space Ranger (Supplementary Fig. S5e) 
for the stroma genes that it detected, particularly toward en
dothelial, myeloid, PVL cell types (Supplementary Fig. S5f). 
Therefore, when discrepant gene expression levels exist be
tween the two pipelines, Xenomake’s results are more likely 
to find additional support from scRNAseq datasets.

3.2 Application: finding stroma- and epithelium- 
biased cell-type markers and cytokines
Xenomake generates plots to enable users to compare the 
mouse and human homolog expression on its gene expression 
matrix outputs, for any genes. For example, one may wonder if 
cell-type markers are stroma-biased or epithelium-biased. One 
can plot human and mouse homolog expression against each 
other (Supplementary Fig. S6). For canonical markers of stroma 
cell types, we expect their expression should be low in human 
(i.e. representing epithelium compartment), but high in mouse 
(i.e. stroma). Expectedly, in the TNBC PDX dataset, Pecam1, 
Fcgr3, Csf1r expression, which respectively mark endothelial 
cells, NK/neutrophils, and macrophages, are high in the mouse 
portion, but lowly expressed in the human counterparts 
(PECAM1, FCGR3A, CSF1R) (Supplementary Fig. S6a). This 
corroborates with the fact that Xenomake assigns correctly 
many stromal exclusive transcripts to the mouse genome. 
Conversely, if known genes that are specific to epithelium, their 
expression should be high in human and low in mouse. 

Expectedly, collagen Col1a1, an abundant protein in the extra
cellular matrix (ECM), is much higher than COL1A1 in human 
(Supplementary Fig. S6a). Using a similar idea, we also have 
been able to identify cytokines that are primarily expressed in 
human (indicating epithelial-biased expression), such as CCL28 
and CCR10, and those expressed in mouse (indicating a stroma 
bias), such as Il33, Il10ra, Cxcl14, and Cxcl12 (Supplementary 
Fig. S6b). Delineation of these is useful for mining cross- 
compartment cytokine interactions. Overall, Xenomake can 
identify not only cell type markers expressed in each compart
ment, but also stromal and epithelial specific cytokines.

3.3 Application: spatial ligand–receptor 
interaction analysis
Using spatial information, one can further detect cell–cell com
munications mediated by the stroma and epithelium compart
ments (Fig. 2a and b). Communication is defined by the spatial 
co-localization of ligand and receptor gene expressions either on 
the same spot, or on adjacent spots connected by an edge in the 
spatial graph. Xenomake enumerates all possible ligand–recep
tor pairs, from a database such as CellPhoneDB (Efremova et al. 
2020), to find spatially enriched within- and cross-compartment 
ligand–receptor interactions. These include Stroma—Stroma 
(SS), Epithelium—Epithelium (EE), and Stroma—Epithelium 
(SE) interactions (Fig. 2a and b). In TNBC, fibronectin—integ
rins (e.g. Fn1—Itgb1), and cytokine—cytokine (e.g. Ccl8—Ccr2) 
represent the predominant form of SS interactions (Fig. 1g). This 
forms a stark contrast with EE interactions that primarily con
centrate on Notch and Wnt signaling (JAG1—NOTCH3 and 
WNT6—FZD1) (Fig. 2a). Xenomake also found evidence of SE 
interactions (Fig. 2b), such as Wnt9a—FZD8, VEGFA—Flt1, 
and Fn1—ITGAV, suggesting that despite the species difference 
of compartments in PDX, the stroma and epithelium can still 
communicate extensively.

4 Discussion
Conventional analyses of bulk PDX samples have removed or 
ignored mouse-assigned reads. In SRT however, there is an 
opportunity to study the spatial interactions between the 
mouse stroma and human tumor cells. Properly assigning 
PDX reads to each respective organism becomes important 
for inferring stroma-epithelial interactions and isolating the 
contribution of mouse stroma in shaping the tumor microen
vironment. Xenomake’s results will permit an accurate delin
eation of stroma cell types and an understanding of cytokine 
signaling mediated by the mouse stroma.

A key difference between Xenomake and previous Xenome/ 
Xengsort is that Xenomake can properly recognize and handle 
cellular barcodes/spatial barcodes and unique molecular iden
tifier (UMI) (Smith et al. 2017) information from read sequen
ces to correctly apportion reads to organisms and spatial 
locations. This allows the tool to support SRT datasets. In fu
ture we plan to support more SRT technologies (Zhu et al. 
2018, Liu et al. 2020, Stickels et al. 2021, Chen et al. 2022, 
Cisar et al. 2023) as these technologies become utilized for 
PDX studies. Because on average between 25 and 35% of 
aligned reads in a PDX experiment are commonly aligned be
tween human and mouse, using a xenograft-sorting enabled 
pipeline to disambiguate these assignments will bring substan
tial improvement to downstream spatial transcriptomic analy
ses (Wolf et al. 2018, Dries et al. 2021, Hao et al. 2021, 
Sztanka-Toth et al. 2022, Domanskyi et al. 2024).
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