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Generalized Gene Adjacencies, Graph
Bandwidth, and Clusters in Yeast Evolution
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Abstract—We present a parameterized definition of gene clusters that allows us to control the emphasis placed on conserved order
within a cluster. Though motivated by biological rather than mathematical considerations, this parameter turns out to be closely related
to the bandwidth parameter of a graph. Our focus will be on how this parameter affects the characteristics of clusters: how numerous
they are, how large they are, how rearranged they are, and to what extent they are preserved from ancestor to descendant in a
phylogenetic tree. We infer the latter property by dynamic programming optimization of the presence of individual edges at the
ancestral nodes of the phylogeny. We apply our analysis to a set of genomes drawn from the Yeast Gene Order Browser.

Index Terms—Comparative genomics, gene clusters, yeast, evolution, phylogeny, genome rearrangements, graph bandwidth,
dynamic programming, Saccharomyces cerevisiae, Candida glabrata, Ashbya gossypii, Kluyveromyces waltii, Kluyveromyces lactis.

1 INTRODUCTION

THE definition of synteny blocks, gene clusters, or similar
constructs from the comparison of two or more
genomes entails a trade-off of great consequence: if we
place emphasis on identical content and order of the genes,
segments, or markers in a block or cluster, only relatively
small regions of the genome will satisfy this restrictive
condition, giving rise to a plethora of tiny blocks while
missing large regions common to the genomes. On the other
hand, by allowing unrestricted scrambling of genes within
blocks (e.g., max-gap [1] or “gene teams” [7]), we forgo
accounting for local genome rearrangement, missing an
important aspect of evolutionary history, or we relinquish
the possibility of pinpointing extensive local conservation,
where this exists.

In this paper, we present a parameterized definition of
gene clusters that allows us to control the emphasis placed
on conserved order within a cluster. Though motivated by
biological rather than mathematical considerations, this
parameter turns out to be closely related to the bandwidth
parameter of a graph. Our focus will be on how this
parameter affects the characteristics of clusters: how
numerous they are, how large they are, how rearranged
they are, and to what extent they are preserved from
ancestor to descendant in a phylogenetic tree. We infer the
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latter property by dynamic programming optimization of
the presence of individual edges in a generalized adjacency
(GA) graph abstractly representing chromosomal gene
order. We apply our analysis to a set of genomes drawn
from the Yeast Gene Order Browser (YGOB) [2]. Among the
results, we find strong evidence for setting a certain fixed
value to the cluster parameter. We also find that we can
recover almost all the clusters that can be found without
order constraints, i.e., by the max-gap criterion, indicating
that local order conservation is a lot greater than that
unconstrained definition would suggest.

2 DEFINITIONS AND PRELIMINARIES

Our characterization of gene clusters is made up of a
general part that identifies clusters of vertices common to
two graphs, and a specific part where a graph is determined
by the proximity of genes on the chromosomes of a genome.
This is illustrated in Fig. 1.

Definition 1. Let Gg = (Vs, Eg) and Gr = (Vp, Er) be two
graphs with a nonempty set of wvertices in common
V=VsnNVp. We say that a subset of C CV is a GA
cluster if it is the vertex set of a connected component of
Gsr = (V, FEsN ET).

Definition 2. For the purposes of genome comparison, we may
consider Vi to be the set of genes in the genome X. For genes g
and h in Vx on the same chromosome in X, let gh € Ex if the
number of genes intervening between g and h in X is less than
0, where § > 1 is a fixed neighborhood parameter.

These definitions of edge sets and GA clusters decom-
pose the genes in the two genomes into identical sets of
disjoint clusters of size greater than or equal to 2, and
possibly different sets of singletons belonging to no cluster,
either because they are in V, but not adjacent to an edge in
Egs N Er, or because they are in (Vs U Vi \ V). For simplicity,
we do not attempt to deal with duplicate genes in this
paper. When 6 =1, a cluster has exactly the same gene
content and order (or reversed order) in both genomes.
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Fig. 1. Graphs constructed from two genomes using parameter 6 = 3.
Thick edges determine clusters. GA clusters are listed for § = 2 and
0 =4 as well.

When 6 = oo, the definition returns simply all the synteny
sets, namely the sets of genes in common between two
chromosomes, one in each genome.

Let II be the set of all orderings of V. Recall that the
bandwidth of a graph G(V, E) is defined to be

B(G) = minmax |p(u) — p(v)]. (1)

In a genome S, each chromosome yx determines a

physical order among the genes it contains.

Proposition 1. Bandwidth B(Gg) =0, as long as there are at
least 20 4 1 genes on some chromosome x in genome S.

Proof. By Definition 2, the vertex v corresponding to the
gene at position 6 4 1 on chromosome Y is connected to
20 other vertices. The most remote of these are at
positions 1 and 26 + 1. In general, for a vertex u at any
other position on x, we can show that the most remote
gene connected to u is no farther away than 6. Thus, for
the order p(-) on the vertices defined by the original gene
order, max|p(u) — p(v)| = 6. Hence, B(Gg) < 6.

For any other order p(-), consider the 26 vertices
connected to vertex v. For one such vertex w, |p(v) —
p(w)| > 6, since we cannot fit 26 vertices connected to v
into an interval of size < 26 + 1, also containing v.

Since the upper and lower bounds coincide, the
proposition follows. O

Proposition 2.

B(Gsr) = max B(C), (2)

where C is the set of connected components of Ggr.

Proof. Since Egr is the union of the edges in all C

_ — 5(1) — B 3

Jnax [p(u) — p(v)] = max max [p(u) — p(v)], 3)
where p(-) is the order induced on the vertices in C
by the order p(-) on Egr. But any set of vertex orders
on all the individual C can be jointly extended to an
order on Vir. O

We compare the definition of a GA cluster with that of a
max-gap cluster [7], [1], briefly reiterated below.

Definition 3. Let § > 1. Let Vo C Vg NV be a set of r vertices
corresponding to genes all on the same chromosome xg in
genome S and all on the same chromosome xr in genome 1.
Let g1, 92, - .., gr be a labeling of these genes according to their
order on xg. Let hy, ho, ..., h, be a labeling of these same genes
according to their order on xp. Let pg(-) and pr(-) indicate the
positions of genes on xg and xr, respectively. Then, if

ps(9i+1) — ps(9i) <0 and pr(hj) —pr(hy) <60,  (4)

for all 1<4,j<r—1, then V¢ satisfies the max-gap
criterion. If in addition, Vi is contained in no larger Vi also
satisfying the criterion, then Vi is said to be a max-gap cluster.

Proposition 3. Every GA cluster with parameter 0 satisfies the
max-gap criterion with the same value of 6.

Proof. Consider two successive genes in the GA cluster in
genome S. By Definition 2, they cannot be separated by
more than 6 — 1 genes not in the cluster. Since this holds
for all pairs of successive genes, both in S and in T, the
max-gap criterion is met. O

The converse of Proposition 3 does not hold, however. The
max-gap criterion limits only the number of noncluster
elements intervening, in either genome, between two cluster
elements. Thus, in the max-gap definition with 6 =2, we
could have a cluster {a, b, c,d, e, f} with order a % bedef in S
and fbdce x a in T, where the asterisks represent genes not
present, or remote, in one of S or T, but this would not be
a GA cluster (though {b,c,d,e} would be). Condition (4)
holds for both S and T since pg(g2) — ps(g1) = 2, ps(he) —
ps(hs) = 2, while the remaining ps(gi+1) — ps(g;) = 1 and the
remaining pr(h;+1) — pr(h;) = 1. Because there is no edge in
Es N Er incident to vertex a or f, neither vertex can be in
GA cluster.

Both max-gap and GA criteria have been analyzed for
the purposes of statistically testing clusters against the null
hypothesis that genomes S and T are randomized with
respect to each other [7], [11].

Note that it is easy to identify GA clusters since
graphs like those in Fig. 1 are trivial to construct, as is
the intersection of the edge sets. The identification of
connected components in a graph is a standard linear-
time algorithm.

3 COMPARISONS OF YEAST GENOMES

3.1 The Data

The YGOB [2] contains complete gene orders and
orthology identification among the five yeast species
depicted in Fig. 2: two descendents of an ancient genome
duplication event, Saccharomyces cerevisine and Candida
glabrata, and three species that diverged before this event,
Ashbya gossypii, Kluyveromyces waltii, and Kluyveromyces
lactis. For the ancient tetraploids, YGOB includes a
reconstruction of the ancestral genome, which, with the
help of further details supplied by Kevin Byrne and
Jonathan Gordon (personal communication), allows us to
identify duplicate genes as belonging to one of the two
ancestral lineages, indicated by A and B in the figure, and
to find two complete sets of clusters in each of these
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Fig. 2. Phylogeny of yeasts in YGOB. Whole genome doubling event at
R giving rise to A and B lineages in S. cerevisiae (SCA, SCB) and
C. glabrata (CGA, CGB) indicated, as is the speciation event at the
divergence of these two species. Choice among the identified ancestor
nodes Y, R, D, A, or B to be the root is arbitrary in our mathematical
analysis, but historically, the earliest divergence time is represented by
the branching at the left of the phylogeny.

species, one in each lineage. For our purposes, then, the
duplicate lineage effectively expands the data set from five
to seven genomes.

3.2 Notation

With reference to Fig. 2, we will refer to the common
ancestor of Ashbya gossypii and Kluyveromyces lactis as
Node D, and to its immediate ancestor as Y. Nodes A
and B will refer to the two ancestral lineages within both
Saccharomyces cerevisine and Candida glabrata at the time
of speciation, while Node R will designate the tetraploid
ancestral to these.

3.3 GA Clusters of Diploid Genomes and
Comparison with Max-Gap Criterion

We constructed GA clusters between every pair of diploids
chosen from A. gossypii, K. lactis, and K. waltii. Fig. 3 reveals
that K. waltii returns fewer and larger clusters than the other
diploids, as we would expect from its closer relationship to
the diploid ancestor Y. Additionally, the number of clusters
detected as a function of 6, decreases as a result of cluster
amalgamation, featuring a distinct elbow near § = 3 for all the
pairwise comparisons. This also shows a striking resem-
blance to the same analysis for max-gap clusters, suggesting
that in these data, the max-gap clusters also satisfy our
more stringent GA criterion. In other contexts, perhaps in
prokaryotes, more intense processes of local gene rearrange-
ment may result in relatively more max-gap clusters.

3.4 Defining Lineage-Specific Clusters
within a Tetraploid Descendant

The YGOB indicates the common ancestry, prespeciation, in
Saccharomyces cerevisiae and Candida glabrata, of two separate
gene lineages, labeled A and B in both genomes. To apply
Definition 2, we first masked the identity of all lineage B
genes without deleting them from their positions, and then
applied the criterion to the lineage A genes to produce the
edges in Gsca and Geoga. We then reversed roles of A and
B, masking the identity of all lineage A genes without
deleting them from their positions, and then applied the
criterion to the lineage B genes to obtain Gscp and Gegp.

In Fig. 4, we depict how cluster size is distributed and
use this to assess the degree of relatedness of genomes
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Fig. 3. Dependence of the number of clusters on neighborhood
parameter, showing that, independent of 0, K. waltii has fewer (larger)
clusters when compared with the other two genomes, as might be
expected from the closer phylogenetic relationship of the latter in Fig. 2.
The dashed line indicates that the max-gap criterion returns fewer,
larger clusters for the same value of é—one max-gap cluster may
contain several GA clusters. Downward slope of all lines due to the
incorporation of smaller clusters into larger ones as 6 increases,
demonstrating that almost all max-gap clusters have also conserved
neighborhood structure. Max-gap clusters are constructed using the

or lineages. Same lineage genes across different species,
SCA-CGA and SCB-CGB, form larger clusters, and thus are
evolutionary closer than different lineage genes in same
species, SCA-SCB and CGA-CGB.
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Fig. 4. Distribution of size of clusters for § = 2, showing larger clusters,
i.e., less evolutionary divergence, between same lineage SCA-CGA and
SCB-CGB in different species than between different lineages. Also, the
two different lineages are more diverged in CG than in SC, as confirmed
for larger 6 (not shown), consistent with the observation of smaller
duplicated blocks in C. glabrata than in S. cerevisiae from past analysis
[3]. Two thinner, unlabeled curves indicate SCA-CGB and SCB-CGA.
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4 GENE CLUSTERS AT THE ANCESTRAL NODES
OF THE YEAST PHYLOGENY

In this section, we transcend clusters constructed from only
two genomes and proceed to reconstruct clusters at all the
ancestral, i.e., nonterminal, nodes of the tree. In Section 4.1,
we describe the algorithm we used, and in Sections 4.2 and
4.3, we give some results from the yeast data.

4.1 Optimizing Ancestral Nodes Minimizing Edge

Appearances/Disappearances

Consider that the data at each terminal node associated
with a given genome consist of a characteristic function x
on the set of pairs of vertices (genes) in the genome graph
described in Definition 2 and illustrated in Fig. 1 in
Section 2, where x(g,h) = 1 indicates the presence of edge
and x(g,h) =0 indicates its absence. For each ancestral
genome, we wish to construct x(g, k) for all g and h in that
genome, so as to minimize the number of times x changes
value from one endpoint of a tree branch to the other, i.e.,
from one ancestral genome to its descendant genome,
summed over all pairs (g, h) in both genomes, and summed
over all branches in the tree. We will discuss this ancestral
node optimization for unrooted binary trees, i.e., where
each ancestral node has exactly three adjacent nodes,
perhaps the simplest instance of dynamic programming
on a tree [4, Chapter 2]. (This procedure is easily extended
to nonbinary trees.)

Dynamic programming requires two passes. In the
forward pass, from the terminal nodes toward the root R
(chosen arbitrarily from among the ancestor nodes, without
consequences for the results), the value of the variable x
(indicating the presence or absence of edge gh) may be
established definitely at some ancestral nodes, while at
other nodes, it is left unresolved until the second “trace-
back” pass, when any multiple solutions are also identified.
We call those edges that are definitely present at a node the
optimals, while those that are potentially present during the
forward pass the near-optimals. We need not discuss further
these that are definitely excluded during the forward pass.

Note that the (arbitrary) designation of one ancestor
node to be the root R determines, for each branch, which of
its endpoints corresponds to the mother genome (the one
proximal to the root), and which to the daughter (the one
distal to the root). We order the nodes so that no node
precedes any of its daughters. (This is always possible for a
rooted tree.)

Suppose ancestral node N (other than the root R) has
daughter nodes K and H. Because of the way we have
ordered the nodes, by the time, we reach N during the
forward pass, we have already decided, for each daughter,
whether edge gh is an optimal or near-optimal. Then, if gh is
optimal for both K and H, it is optimal for N. If it is optimal
for only one of K and H, it is near-optimal for N. For the
root node R, with three daughters, if gh is optimal for at
least two of the three, then it is optimal for R. We need not
consider near-optimals for R.

For the traceback, reversing direction in the same order,
starting at R, if gh is optimal for a mother node and near-
optimal for its daughter, then gh is promoted to optimal
status in the daughter.
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Fig. 5. Distributions of cluster size, with mean y, at Node R, for various
values of 6. Smaller clusters amalgamate into larger ones as 6
increases.

Note that in this method, the presence or absence of
genes in the ancestral genomes derives solely from the
presence or absence of at least one edge having that gene as
an endpoint.

4.2 Results: Cluster Statistics

We applied the dynamic programming method described
in Section 4.1 to assign edges to each ancestor node A, B, D,
Y, and R based on the five present day genomes in the yeast
phylogeny. The genes in each connected component of the
graph thereby constructed at an ancestral node may be
considered to define a GA cluster for that node (though the
details of the edge structure of this component cannot
necessarily be produced as the intersection of two genome
graphs). Introducing the GAs through the neighborhood
parameter allows clusters to be conserved despite local
rearrangements. This is seen in Fig. 5, where the distribu-
tion of cluster sizes (number of vertices) at Node R is seen to
spread out to larger values as 6 increases.

The average sizes of clusters are much higher in the other
ancestral nodes, though they follow the same trend, as seen
in Fig. 6.

While the average cluster size increases, the number of
genes involved in these clusters at a given node does not
change much, as seen in Fig. 7. Consequently, as seen in
Fig. 7b, the number of clusters drops.

4.3 RBResults: Evolution and Cluster Coherency

From node to node, the number of clusters and the genes
they contain change. We can, however, assess to what
extent this change is gradual or abrupt. If a cluster simply
gains or loses a few genes, or if a cluster divides into two, or
if two clusters merge to become one, we may consider the
resulting configuration a gradual change. In these cases,
when we compare the outcome of such changes, the new
cluster is either nested in the old one, or vice versa, or two
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Fig. 6. Mean cluster size at ancestral nodes for various values of 6.
Node R has, on average, the smallest clusters among all nodes,
suggesting that it is furthest from present day genomes.

disjoint new ones correspond to an old one, or vice versa.
We operationalize the notion of “gradual,” then, by saying
two clusters, one in each of two genomes, are in conflict
unless one is nested in the other or they are disjoint. Table 1
shows what proportion of each ancestor’s clusters is in
conflict with their adjacent nodes’ clusters according to this
operationalization. Cluster evolution has been exceedingly
gradual among the diploid genomes, but a good proportion
of the A and B lineage clusters is seriously disrupted in their
common ancestor, and vice versa.

5 BANDWIDTH OF THE CLUSTERS

We have constructed clusters of genes based on adjacencies
presumed to have been present in the ancestral genomes.
While these are most parsimonious inferences, they are not
sufficient to reconstruct the entire genomes, mainly because
we have tried to compute neither how to partition the
clusters among chromosomes nor how to impose a linear
order within a cluster. Indeed, the dynamic programming is
not even able to ensure that the clusters are compatible with
the GA structure imposed on the data genomes in Defini-
tion 2. In other words, there is no constraint on the connected
components, and hence, the entire graph inferred at an
ancestral node, to have bandwidth < 6. If the bandwidth is
larger, it means that we can construct no genome where the
vertices in the connected component in question can be
linearly disposed, so that each edge has less than § genes
intervening between the two endpoints.

On the other hand, there is no compelling reason to insist
on this bandwidth restriction on the ancestral genomes. Our
initial goal was to find how clusters of vertices are
preserved or evolve along various evolutionary lineages,
and if the bandwidth is larger at some ancestor, this simply
suggests that the cluster was looser at that time.
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Fig. 7. (a) Total number of genes in clusters is remarkably stable, except
for Node R, which recruits more genes up to 6 = 4. (b) As 6 increases,
small clusters are amalgamated with larger ones, so that the total
number of clusters decreases.

Whatever the importance or whatever the interpretation
we attach to bandwidth, it is thus of great importance to see
how it is preserved or changed in the ancestral genomes we
are investigating.

5.1 Algorithms and Results

The previous section describes the motivation for investigat-
ing the bandwidth of the graphs we constructed at the
ancestral nodes. The problem of inferring the bandwidth of a
graph is, however, NP-hard [9]. For a given 6, Saxe [10]
showed that determine whether bandwidth is no greater
than 0 could be done in O(n’!) time and O(n’*!) space,
where n is the number of vertices. The space was required
because they employed an array to store plausible partial
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TABLE 1
Conflicts in Clusters between Genomes at Two Ends of
Each Tree Branch As a Function of ¢

Neighbourhood
parameter
Node Adjacent Node 1 3 8
A R 20 36 37
B R 23 36 40
R A 10 16 16
R B 11 16 17
R Y 0 0 0
D Y 0 1 1
Y D 0 0 1
Y R 0 1 1

Percentage conflict out of the total number of clusters in genome in left-
hand column.

layouts. Gurari and Sudborough [6] simplified and im-
proved Saxe’s algorithm so that it runs in O(n’) time and
O(n’) space, in which an array is still used to store all
plausible partial layouts. We implemented this version in a
C++ program but using dynamic balanced binary search tree
(i.e., <map> in C++) as the data structure to store the
plausible partial layouts. This implementation uses ©(kK)
space, where K is the actual number of partial layouts and is
expected much less than ©(n’), in the expense of an extra
O(log n) search time. Note that although these algorithms are
also based on the principles of dynamic programming, they
have no other connection with the ancestral node optimiza-
tion discussed in Section 4.1, which is a completely different
problem.

We ran the program at the High-Performance Comput-
ing Virtual Laboratory (HPCVL) on a Sun Fire 25,000 Node
equipped with 72X dual-core UltraSPARC-IV+ 1.8-GHz
processors and 576 GB of RAM. For a typical graph of
ancestor R with 86 edges and 26 vertices, our program took
20 minutes to verify bandwidth < 7 and occupied over 8 GB
of memory while running.

For large graphs, our program can still be computation-
ally costly, so that we use it on individual clusters only if
rapid heuristics are unable to ensure that the bandwidth
is no greater than 6. This happened in 162 out of the
22,780 clusters, considering 6 from 1 to 10, and all five
ancestral nodes. The heuristic which sufficed for the
22,618 remaining clusters was the reverse Cuthill-McKee
(RCM) algorithm [5], [8]. Since the results of RCM depend
on the input order of the vertices, we ran the algorithm
10,000 times with different orders to see if the estimate for
the bandwidth was no larger than 6. We resort to Gurari-
Sudborough algorithm when RCM cannot guarantee that
bandwidth < 6. Though the algorithms only test whether
the bandwidth is less than a given value £, in each case, we
used Gurari-Sudborough on selected components to prove
that it was also not less than k — 1, i.e., it was exactly the
value reported in the table.

Table 2 shows the results of all our analyses, RCM
followed when necessary by Gurari-Sudborough. We have
no result for ancestor R when we try to verify bandwidth
<10, because the program did not terminate after one
week while using 300 GB of memory. As can be seen in
the table, the bandwidth is never greater than # except in
a few cases for node R. In other words, the GA clusters

TABLE 2
Bandwidth of Edge Sets Produced by Dynamic Programming at
the Ancestral Nodes of Yeast Evolutionary Tree for
Various Values of the Neighborhood Parameter 6

0 Node

A R B Y D

1 1 1 1 1 1
2 2 3 2 2 2
3 3 4 3 3 3
4 4 4 4 4 4
5 5 5 5 5 5
6 6 6 6 6 6
7 7 8 7 7 7
8 8 8 8 8 8
9 9 9 9 9 9
10 | 10 >10? 10 10 10

at each ancestral node are compatible with at least one
(and probably many) genome whose chromosomes are
strictly linear.

These results are of interest because they show that the
neighborhood parameter necessary to account for the cluster
structure at an ancestral node is quite stable, i.e., generally no
greater than the parameter used for the genomes at the given
terminal nodes. It would be interesting to see to what extent
this might break down if the phylogeny were multifurcating
instead of binary branching.

6 SIMULATIONS

We undertook simulations to ascertain whether the config-
urations of clusters at the various ancestral nodes, for the
various values of 6, could be accounted for by a simple
model of random genome rearrangement along the branches
of the tree in Fig. 2. The first step was to determine the
number of rearrangements for each branch. Starting with the
previously inferred ancestor D, but with a randomized gene
order, random rearrangements were introduced in a
scenario leading to a simulated KL and, independently, to
asimulated AG. The number of clusters produced (for § = 5)
by comparing the current stage of KL and AG was
monitored until it was as close to the number previously
inferred for D, based on the true KL and AG genomes. (No
effort was made to optimize: the numbers of rearrangements
were tested in groups of 10.) Similarly, starting with a
randomized AB ancestor, simulated SC and CG genomes
were generated with random rearrangements so that the
clusters induced at AB by the simulated modern SC and CG
were as numerous as these induced by the real genomes.
Similarly, for the numbers of rearrangements needed to
produce Y from D and KW, and finally to produce R from Y
and AB, taking into account the doubling event at R.

Once the number of rearrangements necessary, summar-
ized in Table 3, were estimated by these methods, the actual
schema of rearrangements are applied in appropriate
numbers, starting from the ancestor R as reconstructed in
YGOB, and continuing through the other ancestral nodes
until all five present day genomes were simulated. The
random rearrangements, both here and in our above
method for estimating the number for each branch, consist
of inversions and translocations in a 10:1 ratio. To simulate
a random inversion, two breakpoints are sampled (accord-
ing to uniform probabilities) along one chromosome, and
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TABLE 3
Rearrangements Applied along Branches of Phylogeny

number of
branch rearrangements
R to AB 20
RtoY 10
Y toD 20
Y to KW 70
D to AG 140
D to KL 140
AB to SC 180
AB to CG 190

the sequence of genes between the two breakpoints is
reversed. To simulate a random translocation, a breakpoint
is chosen on each of two chromosomes, and the prefixes or
suffixes are swapped.

After the rearrangements were carried out, the same
cluster construction was performed on the simulated data
as on the original genomes. Fig. 8 shows the number of
clusters at each ancestral node. It is not surprising that for
0 = 5, the simulated values and real values tend to coincide,
for it was at this value of § that we estimated the number of
rearrangements to use in the simulations. However, the
number of clusters in the real and simulated ancestors is
also quite parallel at # = 2, 10, and 20.

These results indicate that the GA cluster approach is a
robust and coherent way of approaching the cumulative
perturbations in gene order due to evolutionary inversions
and translocations. A simple model of inversion and
translocation, the parameters of which are chosen to fit
the data at one value of §, works just as well at other values,
and the number of clusters is well explained by the number
of rearrangements that have intervened between two or
more genomes.

7 CONCLUSIONS

The GAs we have introduced allow us to recognize clusters
even though they have been perturbed by local rearrange-
ments. That the max-gap criterion gives approximately the
same number of clusters means that max-gap is too weak a
criterion for these data in that it does not target order
conservation in the clusters as much as GA does. So without
the GA analysis, we would not know whether the max-gap
clusters were ordered or not.

Our separation of the A and B lineages as separate
phylogenetic lineages is validated by the higher number of
within-lineage clusters than within-species clusters, with
the C. glabrata genome appearing highly rearranged.

We have shown the interplay of bandwidth considera-
tions and the dynamic programming optimization of
ancestral nodes in a given phylogeny. Our implementa-
tion of a difficult bandwidth algorithm is a potentially
useful tool.

The neighborhood parameter allows us to control
the distribution of cluster sizes and the number of clusters.
It allows us to explore the trade-off between the size of
clusters and the rate of conflict between clusters in
connected ancestral nodes.

Supplementary information. Experimental software
used in this work may be obtained from the first author.
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Fig. 8. Clusters reconstructed at ancestral nodes. Solid lines: Real data.
Dashed lines: Average of five simulations.
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