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ABSTRACT

Motivation: Autopolyploidization and allopolyploidization events

multiply the number of chromosomes and genomic content.

Genome rearrangement phylogenetics requires that all genomes

analyzed have the same set of orthologs, so that it is not possible to

include diploid and polyploid genomes in the same phylogeny.

Results: We propose a framework for solving this difficulty by

integrating the rearrangement median and genome halving algo-

rithms. Though the framework is general, some problems remain

open. We implement a heuristic solution to the prototypical case

of a tree with one tetraploid and two diploid genomes, and apply

it to study the evolution of cereals and of yeast.

Contact: sankoff@uottawa.ca

1 INTRODUCTION

Phylogenomics based on cross-species comparisons of synteny

block order (henceforward rearrangement phylogenetics) pro-

vides an approach to phylogenetics independent of that based

on nucleotide or amino acid sequence divergence. The order-

based approach takes advantage of the periodic and cumulative

rearrangement of genomic material by evolutionary processes,

such as inversion, reciprocal translocation and transposition.

The basic methods require that the genomic content be roughly

the same in all the organisms being compared, so that every

chromosomal segment in one genome be identified with a

single orthologous counterpart in each of the others, though

adjustments can be made for a limited amount of deletion,

insertion and duplication of segments.
Many genomes have been shown to result from an ancestral

doubling, or tetraploidization, event, after which meiosis is

characterized not by the normal pairings of one maternal and

one paternal chromosome, but by quadrivalent alignment

of chromosomes or other combinations. Tetraploidization is

followed by a period of re-diploidization, where distinct

pairings again emerge, though in twice the original number,

a process mediated by sequence divergence and by genome

rearrangement through intra- and interchromosomal move-

ment of genetic material. The present-day genome (often still

referred to loosely as a tetraploid) can be decomposed into a set

of duplicated synteny blocks dispersed among the chromo-

somes. There is usually no obvious way of partitioning the

blocks into two sets according to which ones were together in

the original tetraploid.

Rearrangement phylogeny algorithms are not applicable

since there is a two-to-one relationship between blocks in the

former tetraploid and those in related diploid species, whereas

these algorithms require a one-to-one correspondence.
Tetraploidization may also occur as a fusion of two distinct

but related genomes (allotetraploidy) instead of the doubling of

a genome (autotetraploidy), and both types of polyploidization

may recur during evolution, so that instead of a 2n diploid

number, the descendant (polyploid) genome will have 2rn,

where r > 1.1 These genomes will be constituted not by

duplicated blocks, but by a set of blocks with r homologous

copies each, dispersed among the chromosomes.

In this article, we provide an overall strategy for rearrange-

ment phylogeny for sets of related genomes that include

some that have undergone polyploidization, including

allopolyploidization. We specifically attack the ‘small’ phylo-

genetic problem, i.e. identifying the ancestral genomes for a

given phylogeny that jointly minimize the sum of the

rearrangement distances along the branches of that phylogeny.

To take into account allopolyploidy, the phylogeny must be

reticulated.

In Section 2, we outline a model for generating an arbitrary

pattern of polyploidy observed at the tips of a reticulate

phylogeny. Based on this model, we then present an algorithm

for inferring the ploidy of the ancestral genomes in terms of an

economical set of autopolyploidization and allopolyploidiza-

tion events along the edges of the phylogeny graph. Once

we have the ancestral ploidies, we can approach the actual

rearrangement problem. We identify three kinds of component

of this problem, one a calculation of the genomic

distance between two given genomes with clearly identified

orthologs, i.e. the minimum number of rearrangements

necessary to transform one genome into another; the second

a ‘de-ploidization’ calculation for inferring the genome of an

ancestral polyploid based on internal evidence from its

modern descendant only and the third a ‘medianizing’ process

for inferring an ancestral genome from its three neighboring

genomes in a binary branching tree. In Section 3, we show how

to integrate algorithms for the three components into an overall

procedure for inferring the ancestral polyploids in a given

phylogeny, and we describe in particular detail the prototypical

case of one tetraploid and two related diploids. In Sections 4

and 5, we apply our method to a small data set on maize and a

large data set on yeast, respectively.

*To whom correspondence should be addressed.

1Genomes with odd ploidy are generally deemed to be infertile because
of the impossibility of segregating into haploids containing equal
numbers of chromosomes during meiosis.
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2 MODEL, INFERENCE AND DECOMPOSITIONS

The simplified assumptions we will adopt in this abstract are

that polyploidization occurs either by tetraploidization of a

genome, namely replacing each of its chromosomes by two

identical chromosomes, so the diploid number goes from 2n

to 4n, or by the fusion of two different genomes of diploid

numbers 2n and 2m, respectively, merging the two sets of

chromosomes, and producing a 2ðnþmÞ allopolyploid.

Following the polyploidization, the genome evolves via

inversion of chromosomal segments, reciprocal translocation

between two chromosomes, or chromosome fusion and fission,

and may further polyploidize at any time.
We will assume the evolutionary histories to be binary

branching trees, with allopolyploidy events represented by

horizontal reticulations between branches of the tree, as

illustrated in Figure 1. The model imposes the equations in

the illustration: each autopolyploid must have ploidy equal to a

non-negative exponent of 2, times the ploidy of its immediate

ancestor. Each allopolyploid must have ploidy equal to the sum

of its contributing genomes. The allopolyploidy events are

given, though not the ploidy of the participating genomes,

which must be inferred, and the autopolyploidy events are to be

inferred.
This model is simplified and cannot account for all possible

observations of even-numbered ploidies at the leaves of the

phylogeny; a full model of polyploidy in phylogenetic context

would allow for events such as the fusions of a polyploid with

an earlier diploid version of itself. Such a model, worked out

in the full version of this article, can account for all possible

observations of even-numbered ploidies at the leaves of the

phylogeny, but can also give rise to a great multiplicity of

solutions.
Because our restricted version of this problem here does not

generate all possible combinations of observations at the leaves

of the tree, the solution to the ancestral ploidy assignment

problem does not always exist for an arbitrary data set of

present-day ploidies. When it does exist, it can be obtained by

solving a system of equations such as that in Figure 1, with

the objective of minimizing the sum of the exponents in the

autopolyploidization equations. Generally, the ploidy of the

root is as high as possible, consistent with a minimum of

autopolyploidization events along all the branches.

Once we have inferred the ploidy of the ancestral genomes,

how are we to approach our original problem: to reconstruct

the synteny block order of the ancestral genomes and thus infer

the cost of the phylogeny in terms of rearrangement events?

Elements of the solution are discussed in Section 3.1.1 below.

The first point to stress is that the rearrangement distance can

only be directly calculated between two genomes that have a

common polyploidization history. Thus, we can calculate the

rearrangement distance between the genomes labeled a and b in

Figure 1, but not between a and c. What is required is to take

account of the inferred transition from diploid to tetraploid,

the autopolyploidization event h, on the path between q and k.

We add the distance between the tetraploids at h and c to the

distance between the diploids at h and a. To be able to do this,

we first find the synteny block order at h using the genome

halving algorithm.
We may further ask, even if we can calculate h, how can

we know the synteny block order for an ancestor like that

labeled m in Figure 1? This requires a median algorithm. Other

questions to be answered before all kinds of ancestral genomes

can be inferred, and the total branch length of the phylogeny

evaluated, are listed in Section 3.1.4.

3 THE ALGORITHMS

In this section, we discuss a local search heuristic for the

solution to a prototypical phylogeny problem involving one

genome descended from a tetraploid and two related diploids.

The main focus of this work is to produce an accurate

initialization. It is based on integrating three existing algo-

rithms, which we can only cite in this abstract.

3.1 Existing and missing resources

3.1.1 Genomic distance Distance based on genomic
structure d(X,Y) is calculated by linear-time rearrangement

algorithms for finding the minimum number of operations

necessary to convert one genome X into another Y. Each

genome is composed of a (possibly different) number of

chromosomes containing linearly ordered terms. Comparison

of the two genomes induces a decomposition of each into

a set of synteny blocks. The set of blocks is the same for

each genome, but it is differently partitioned among the

chromosomes, differently ordered within the chromosomes,

and the left-right orientation of a block may also differ in the

two genomes.
The biologically motivated rearrangement operations we

consider include inversions (implying as well change of

orientation) of chromosomal segments containing one or

more blocks, reciprocal translocations (of telomere-containing

segments—suffixes or prefixes—of two chromosomes) and

chromosome fission or fusion. Here we make use of a versatile

rearrangement algorithm recently introduced by Bergeron et al.

(2006), which we constrain to allow only the operations we have

listed.

3.1.2 Genome halving Given a genome T that can be

decomposed into a set of synteny blocks, each of which appears

twice on the genome, on the same or on different chromosomes,

Fig. 1. Example of ploidy inference problem. Genomes labeled by

ploidies, observed only for leaves of phylogeny. Tetraploidy events

inferred at g and h, or alternatively on the branches jr and qc.
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how can we construct a genome A containing only one

copy of each block, and such that the genome A� A

consisting of two copies of each chromosome in A

minimizes dðT,A� AÞ? Here we use the linear-time algorithm

for solving this problem due to El-Mabrouk and

Sankoff (2003).

3.1.3 Rearrangements median Given three genomes X,Y and
Z, how can we find the median genome M such that

dðX,MÞ þ dðY,MÞ þ dðZ,MÞ is minimized. For this NP-hard

problem, we implement a heuristic using the principles of the

[Bourque and Pevzner, 2002] MGR (multiple genome rearran-

gement) algorithm, but based on the constrained version of the

Bergeron et al. (2006) distance algorithm.

3.1.4 Open questions To fully solve the inference

problem as stated, even within the limitations imposed by the

heuristic implementation of the median problem and the

heuristic steps in the main algorithm in Section 3.2 below,

we would have to generalize the genome halving problem in

several directions:

� Given two tetraploid (or 2�-ploid) genomes X and Y, i.e.

with two (or 2��1) copies each of every syntenic block, find

the matching of each pair (or set of 2��1) paralogs between

the two genomes that minimizes the rearrangement

distance.

� Given a genome P with ploidy 2p ¼ 2ðrþ sÞ, r, s > 0, find

the 2r-ploid and 2s-ploid genomes R and S, respectively,

such that the distance dðP,R� SÞ is minimized.

� Given a genome Q with ploidy 2�,� > 1, find the

2��1-ploid A such that the distance dðQ,A� AÞ is

minimized.

3.2 Strategy for the problem of one tetraploid

and two diploids

Let T be a genome with diploid number 4n, i.e. 2n pairs of

(identically ordered) maternal and paternal chromosomes,

and 2m syntenic blocks, g1, 1� � �, g1,m; g2, 1,� � �, g2,m, dispersed in

any order on the 2n different chromosomes. For each i, we call

g1, i and g2, i ‘duplicates’, and the subscript ‘1’ or ‘2’ is assigned

arbitrarily. A potential ‘ancestral tetraploid’ of T is written

A� A, and consists of 2n0 chromosomes, where some half (n0)

of the chromosomes contains exactly one of each of g1, i or g2, i
for each i ¼ 1,� � �,m. The remaining n0 chromosomes are each

identical to one in the first half, in that where g1, i appears on a

chromosome in the first half, g2, i appears on the corresponding

chromosome in the second half, and vice versa. We define A to

be either of the two halves of A� A, where the subscript 1 or 2

is suppressed from each g1, i or g2, i. These n
0 chromosomes, and

the m syntenic blocks they contain, g1,� � �, gm, constitute a

potential ‘ancestral diploid’ of T.
A solution of the genome halving problem for T is any A

such that dðA� A,TÞ is minimal. There are generally many

different solutions to this problem.
Consider an unrooted tree with three leaves, T and two

diploid genomes R1 and R2 with blocks orthologous to

g1, . . . , gm, as in Figure 2a. Our central problem is to find a

diploid genome A and a median genomeM of A,R1 and R2 that

minimize

DðT,R1,R2Þ ¼ dðR1,MÞ þ dðR2,MÞ þ dðA,MÞ þ dðA� A,TÞ:

ð1Þ

There is no requirement that A be a solution to the genome

halving problem, but since they already minimize one term of

D, some of these solutions might be good initial guesses for

an optimal A. Let S be the set of solutions of the genome

halving algorithm for T. Initially in our heuristic, schematized

in Figure 2b, we confine our search to S.
For each solution X 2 S, we calculate the median distance

dðR1,MðXÞÞ þ dðR2,MðXÞÞ þ dðX,MðXÞÞ, as in Figure 2c. This

is the bottleneck in our procedure, since S may be very large,

and an accurate calculation of the median is costly for each

element of S. When the number of markers m is small, say a few

dozen, as to be illustrated in Section 4 below, it is possible to do

evaluation of S. When m is in the hundreds, as to be illustrated

in Section 5 below, we resort to a random sample of the

genomes in S.
We then define

S0 ¼ fX 2 SjdðR1,MðXÞÞ þ dðR2,MðXÞÞ þ dðX,MðXÞÞ

is a minimumg: ð2Þ

By definition, there is no minimizing genome in SnS0. To look

for a minimizing A outside of S, we first guess that any such

genome will be found on a path between some element X 2 S0

and M(X), as in Figure 2d. We calculate the dðX,MðXÞÞ

genomes, other than X, on a parsimonious trajectory

X,Xð1Þ,Xð2Þ, � � � ,MðXÞ from X to M(X). Note that

dðXðiÞ,MðXÞÞ ¼ dðX,MðXÞÞ � i. Then we search for an XðiÞ

such that

dðXðiÞ,MðXÞÞ þ dðXðiÞ � XðiÞ,T Þ

< dðX,MðXÞÞ þ dðX� X,T Þ: ð3Þ

R1

R2

T

S

R1

R2

T

S

M(X)

R1

R2

T

X S

M(X )

R1

R2

T

X

A

(a) (b)

(c) (d)

Fig. 2. Strategy for phylogenetically constrained genome halving.

(a) Descendant T of ancestral tetraploid, with two related diploids R1

and R2. (b) Set S of solutions of genome halving of T, showing pairs of

fused identical diploids. (c) Solution X 2 S that also induces minimizing

solution MðX) of the median problem on X,R1 and R2. (d) Genome A

minimizing objective function among all genomes on any trajectory

between X and M(X).
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For relatively small examples, e.g. for the data in Section 4, we

can also iterate on the median step, and look for

dðXðiÞ,MðXðiÞÞÞ þ dðXðiÞ � XðiÞ,T Þ

< dðX,MðXÞÞ þ dðX� X,T Þ: ð4Þ

Any genome XðiÞ that minimizes the left hand side of

inequality (3) or, better, inequality (4), over all genomes

X 2 S0, and all trajectories between X and M(X) (or MðXðiÞÞ),

is then a good initialization for a local hill-climbing search for

an A, or for a pair ½A,MðAÞ�, giving a local minimum for D.

The details of the search vary from one empirical problem to

another, but in our experience, there is often no better local

minimum A than XðiÞ itself. If there is no such XðiÞ, i � 1, then

any X 2 S0 minimizes D.

4 A SMALL DATA SET ON MAIZE

It is generally agreed that the maize (Zea mays) genome

underwent a genome doubling event some 11–16 million years

ago (Gaut and Doebley, 1997). While some duplicated regions

clearly attest to this event, there is no consensus on the exact

inventory of such regions. Here we apply our method to infer

the ancestor of the maize genome, with the rice (Oryza sativa)

and sorghum (Sorghum bicolor) genomes as the two related

diploids. For this purpose, we are concerned only with

duplicated blocks in maize, and their single-copy counterparts

in rice and sorghum, as extracted from the Gramene database

(Jaiswal et al., 2006), and not the remainder of each of the

genomes.
In a previous study (Zheng et al., 2006), we used Gramene to

identify 34 syntenic blocks with two copies in maize and one

copy each in sorghum and rice, though the partial nature of

the maize genome sequence and the relative absence of sorghum

sequence means that this genetic marker-based construction

must be considered preliminary.

The genome halving algorithm usually involves some

arbitrary choices in constructing the optimal ancestral tetra-

ploid. In the case of the maize genome, this leads to more than

1 500 000 distinct solutions in S. The original data set not

being very large (34 blocks in two genomes, 68 in maize), this

exemplifies the extreme lack of uniqueness in the results of

genome halving.
When we bring the diploid genomes to bear using

Equation (2), however, testing all 1 500 000 elements of S, the

set S0 contains only nine solutions. Thus there is a massive

reduction of non-uniqueness induced by carrying out

de-ploidization in phylogenetic context.

Searching for A andM(A) along a trajectory from S0 towards

the median using the criterion in inequality (4) led directly to

the solution in Figure 3, which is not improved by local

searching. Other trajectories from S0 towards the median gave

three other solutions, with almost identical component

distances. And other search methods (along trajectories to R1

or R2) provided a fifth solution, at a much greater distance,

dðT,A� AÞ ¼ 32, from T.
For the schema in Figure 3, the given and inferred genomes,

with synteny blocks evident, are depicted in Figure 4.

5 TETRAPLOIDIZATION OF YEAST

Wolfe and Shields (1997) convincingly demonstrated an

ancient tetraploidization of Saccharomyces cerevisiae a

decade ago. Recently, the post-tetraploidization evolution of

S.cerevisiae has been studied by comparison to the diploid

genomes of Ashbya gossypii (Dietrich et al., 2004) and of

Kluyveromyces waltii (Kellis et al., 2004), though without

recourse to genome rearrangement or genome halving

algorithms.

Each of these studies located a set of synteny blocks on the

diploid genome, each block homologous to a pair of duplicate

synteny blocks on the S.cerevisiae genome. These blocks were

explicitly listed in the case of K.waltii, for which we could

confirm 239 blocks, but only portrayed diagrammatically in

the case of A.gossypii. We developed a protocol to tabulate

the A.gossypii blocks based on this visual information, and

obtained 409 blocks.
We then established a second protocol to align the blocks

on S.cerevisiae corresponding to K.waltii blocks and those

corresponding to A.gossypii blocks, sometimes dividing a long

block from one diploid into shorter blocks corresponding to

the other, and allowing �2 extra ORFs on a block without

throwing a correspondence into doubt. This protocol produced

263 blocks in both K.waltii and A. gossypii, each corresponding

to a pair of duplicate blocks in S.cerevisiae.
Applying our method to this large data set produced

the solutions in Figure 5. Because the time required for

the median heuristic increases drastically with m, where we

could handle 1.5�106 runs with m¼ 34 in the case of maize, we

could only sample 2506 elements from S with m¼ 263,

and found an S0 with only one element. To compensate

for the sketchy coverage of S, we also examined several

solutions of the genome halving algorithm where D was slightly

suboptimal. Furthermore, we used the criterion in inequality (3)

instead of the computationally more costly inequality (4) to

locate A. Of interest is that one of the solutions has A 2 S0,

though this was not one of the sampled genomes, but was

found in the trajectory between a suboptimal solution B

and M(B).

ancestral tetraploid

S

median

sorghum

rice

ancestral diploid

maize

11

10
8

28

27

Fig. 3. Solution for the maize data.
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How different are these two solutions, summarized in

Figure 5? If we calculate the rearrangement distance between

them and compare it with randomly chosen pairs of genomes

in S as in Figure 6, we see the distance between the two

solutions is significantly smaller, although it is still large.

Of course, it is possible that there is a unique, better,

global optimum, but the impression gained from this example

is that the present-day genomes do not contain very precise

information on the position of the ancestral median in the space

of genomes.

 30a 31a 23a-15a 16a 07a-29a 24a 14a 08a 09b
-12a 05a 06a 32b-10a
-01a 23b 16b-04a-03a-02a
-25a 33a 34b-18a 17a 11a 19b
-25b-09a-08b 13a 24b 14b 15b-19a-18b-17b
-34a 26a-05b-28a 27a-22a-21a-20a
 11b 06b 07b 32a
 01b-20b 22b 21b 29b-02b-04b-03b
-27b 28b-26b-31b-30b
-33b 10b-13b-12b

 01  02  03  04
 32  10 -06 -05
-09 -08 -07  24  25  14  15 -30 -31
 12  13
 16
 17 -18  19
 20  21  22
 11 -33 -34
 26  27  28
 29  23

 01  02  03  04
-19 -18 -17
 30  31  32  08  09
-12
 16  22 -21 -20
-28 -27 -26
 05 -10
-34  29
 06  07
-15 -14 -13 -24
-25 -33
-11 -23

 01  02  03  04
 05  06  07  08  09
 10  11
 12  13  14  15
 16
 17  18  19
 20  21  22  23
 24  25
 26  27  28
 29
 30  31  32
 33  34

 30  31  32
-25 -09 -08 -07 -06 -05 -28  27
 10  11
-34 -33
 17  18  19
 01 -22 -21 -20
-23  02  03  04 -16
 26  12  13
-29
-15 -14 -24
 30  31  32
-25 -09 -08 -07 -06 -05 -28  27
 10  11
-34 -33
 17  18  19
 01 -22 -21 -20
-23  02  03  04 -16
 26  12  13
-29
-15 -14 -24

ancestral diploid

maize ancestral tetraploid

rice

median
sorghum

Fig. 4. Given and inferred cereal karyotypes and synteny blocks, color-keyed to the median genome.

ancestral tetraploid

S

median

K. waltii

K. waltii

A. gossypii

A. gossypii

ancestral diploid

S

(a)

(b)

S.cerevisiae

ancestral tetraploid

116

150

73
152

median

S.cerevisiae

141

88
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120 ancestral diploid

Fig. 5. Two solutions for the yeast data. (a) Solution 2 S. (b) Solution

=2 S and detailed in Figure 7.
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Fig. 6. Distribution of distances between genomes in S.
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6 CONCLUSION

Among orthology assignment problems, the case of tetraploidy

(and autopolyploidy in general) is rather unique in that DNA

sequence information cannot help in partitioning the duplicate

blocks into two sets, one from one copy of the original diploid,

and the other set from the identical second copy, precisely

because they were identical. This is not always the case with

allopolyploidy since paralogs coming from one contributing

polyploid would be more similar in DNA sequence amongst

themselves than to paralogs from the other contributing

polyploid. Thus our methodology could be made more precise

in such cases by incorporating DNA sequence evidence insofar

as allopolyploidy is concerned, but not autopolyploidy.
As mentioned in Section 3, there are many open problems to

be solved before a general solution, even a heuristic one, is

feasible for our simple model of polyploidy. And there are

many more problems for a general model allowing for

autopolyploidy by means other than tetraploidization.

Algorithmically, a difficult problem would be to replace our

sequential procedure by a single algorithm searching for the

pair ½A,M � that minimizes DðT,R1,R2Þ. This would be a hard

problem, given that the median problem itself is NP-hard.

Modifying the halving algorithm so that it could take account

of both R1 and R2, while retaining optimality of the ancestral

diploid, might be a good strategy for avoiding the construction

of the entire set S, but would not mitigate the complexity of the

median step.

ACKNOWLEDGEMENTS

Research supported in part by a grant to D.S. from the Natural

Sciences and Engineering Research Council of Canada

(NSERC). D.S. holds the Canada Research Chair in

Mathematical Genomics and is a Fellow of the Evolutionary

Biology Program of the Canadian Institute for Advanced

Research.

S. cerevisiae

ancestral diploid

ancestral tetraploid

A. gossypii

K. waltii

median

Fig. 7. Given and inferred yeast karyotypes and synteny blocks, color-keyed to the median genome. Long chromosomes are wrapped and

chromosomes are separated by thin white space.

D.Sankoff et al.

i438

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/23/13/i433/225854 by Library user on 03 M
ay 2024



Conflict of Interest: none declared.

REFERENCES

Bergeron,A. et al. (2006) A unifying view of genome rearrangements.
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