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or, in human, to identifying similar arrays7 or performing  
gene-level search on a single microarray platform8.

We present SEEK, a robust cross-platform search system capa-
ble of handling large human expression data sets across multiple 
expression platforms, including microarray and high-throughput 
sequencing technologies, and automatically prioritizing data sets 
relevant to the user’s single- or multiple-gene query to identify 
genes co-regulated with the query (Supplementary Figs. 1–6). 
SEEK provides biomedical researchers with a systems-level, unbi-
ased exploration of diverse human pathways, tissues and diseases 
represented in the entire heterogeneous human compendium. 
The system integrates thousands of data sets on the fly using 
a novel cross-validation–based data set–weighting algorithm, 
which robustly identifies relevant data sets and leverages them 
to retrieve genes co-regulated with the query. It supports sophis-
ticated biological search contexts defined by multigene queries 
and enables cross-platform analysis, with the current compen-
dium including 155,025 experiments spanning 5,210 data sets 
from 41 different microarray and RNA-seq platforms (Fig. 1a 
and Supplementary Data 1). It has been implemented in a user-
friendly interactive web interface (http://seek.princeton.edu/), 
which includes expression visualization and interpretation mod-
ules (Fig. 1a). This interface facilitates hypothesis generation by 
providing (i) intuitive expression visualizations of the retrieved 
coexpressed genes, (ii) explorations of individual data sets to 
establish associations between coexpressed genes and biological 
variables and (iii) further refinement of the search results, such 
as limiting data sets to a specific tissue or disease.

The search algorithm (Online Methods) allows for multigene 
queries and includes a gene connectivity, or ‘hubbiness’9,10, cor-
rection procedure, a novel cross-validation data set–weighting 
method, and a summarization procedure to calculate the final 
score for each gene. Prior to application of the search algorithm, 
the data compendium is preprocessed to make correlation dis-
tributions comparable across data sets. Then a hubbiness correc-
tion procedure is applied to remove biases caused by generically 
well-coexpressed genes not specific to the user’s area of interest, 
which is defined by the query. The data set–weighting algorithm 
then prioritizes relevant data sets according to the query. The 
idea is to upweight data sets from which a subset of the query 
genes can retrieve the remaining query genes well on the basis 
of normalized, hubbiness-corrected coexpression in that data 
set (cross-validation–based weighting). This approach is effec-
tive even when not all query genes are coexpressed. Finally, the 
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The accumulation of human gene expression data in public repos-
itories, such as The Cancer Genome Atlas1 and Gene Expression 
Omnibus2, offers unprecedented opportunities for data-driven 
characterization of biological pathways that underlie human 
diseases. Unsupervised, exploratory approaches are particularly 
suitable for data-driven discovery and in settings with insufficient 
or biased training data. However, traditional unsupervised meth-
ods, such as clustering and biclustering3,4, do not readily extend 
to compendia containing thousands of data sets from different 
expression technologies and platforms. Query-based search can 
enable biomedical researchers to effectively explore and analyze 
the large collection of expression data sets to identify coexpressed 
genes. With these results, scientists can explore functional rela-
tionships and make inferences about pathway function with regard 
to query genes of interest. However, existing search approaches 
are limited to smaller compendia in model organisms5,6  
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integrated gene scores are calculated on the basis of the data 
set weights and genes’ coexpression patterns in each data set to  
provide a final gene ranking.

SEEK is based on measuring coexpressions, which minimizes 
biases toward prior knowledge, and accurately extracts functional 
information without need to explicitly model outcome variables 
such as treatment and control experiments (Fig. 1b and prior 
works5,6,8,11). The use of coexpression thus enables the robust 
integration of a large number of data sets from diverse tissues, 
cell lines and disease origins, generated from diverse platforms, 
and such an approach can be extended to make functional com-
parisons across organisms. A key challenge here is that the search 
results can be polluted by batch effects12, poor-quality data sets or 
even good-quality data sets irrelevant to the user’s query context. 
Yet the detailed, targeted correction of these issues in each data set 
or modeling of each outcome variable is impossible in the context 
of a large, multiplatform compendium. SEEK’s data set–weighting 
algorithm addresses this challenge by enabling multigene query 
support for constructing expressive search contexts and by using 
a discriminative algorithm for identifying which data sets are 
relevant and accurate in representing query-related biological 
processes. This algorithm automatically downweights low-quality  
data sets (Supplementary Fig. 7 and Supplementary Note 1) and 
provides accurate retrieval of functionally related genes and data 
sets (Fig. 1b and Supplementary Figs. 1 and 2).

SEEK was accurate and robust in a large-scale gene-retrieval 
assessment across a diverse array of biological contexts. Specifically, 
we constructed over 129,000 queries spanning 995 human Gene 
Ontology (GO) biological process gene sets (by choosing subsets of 
genes from each process) and evaluated the ability of the algorithm 
to retrieve the remaining genes in the process (Online Methods). 
This setup was designed to simulate realistic situations in which 
the query genes are biologically coherent but are not necessarily 
well coexpressed and in which users are interested in identify-
ing genes functionally related to the query (in this case, members 
of the same biological process). SEEK’s performance was robust 
across a wide range of pathways (Supplementary Data 2), and it 

consistently outperformed previous search approaches, includ-
ing the only query-based human search system, MEM8; Gene 
Recommender6 (not available for human as a resource); and the 
correlations on the combined data set (Fig. 1b and Supplementary 
Note 2). Furthermore, our evaluation demonstrated that SEEK’s 
support for multigene queries enhances the algorithm’s ability 
to effectively weight relevant data sets from the compendium 
(Supplementary Fig. 1a) and that the algorithm is robust with 
respect to query noise (Supplementary Fig. 2).

Notably, our evaluation demonstrated the benefits of robust 
search of a compendium with thousands of expression data sets, 
as SEEK’s performance improved with the inclusion of more 
microarray and RNA-seq data sets in the compendium, assessed 
by subsampling our large compendium to create smaller sub-
sets (Supplementary Fig. 3 and Supplementary Data 3). 
Furthermore, being able to integrate the full scale of the exist-
ing human gene expression data allows the approach to support 
focused queries covering diverse areas of biology (Supplementary 
Fig. 4), providing strong performance across varied processes 
including erythrocyte differentiation (44-fold improvement of 
precision over random (FIOR) at 10% recall) and glutamate sig-
naling (104-fold) (Supplementary Fig. 4). In contrast, using the 
most relevant single data set for the same query yielded weak per-
formance of just 3- and 6-FIOR for the two processes, respectively, 
thus demonstrating the value of using the entire compendium.

We illustrated the power of SEEK and multigene queries by 
using SEEK to identify genes dysregulated in the Hedgehog (Hh) 
pathway and the corresponding tissues and disease states where 
the Hh pathway is hyperactivated. We used Hh genes GLI1, GLI2 
and PTCH1 as the query, where transcription factors GLI1 and 
GLI2 have been suggested as pathway markers of Hh signaling13. 
By examining this query in the context of a large compendium 
of expression data sets (Fig. 2a and Supplementary Fig. 5), we 
observed a wide prevalence of aberrant Hh signaling across many 
diseased tissues (Supplementary Fig. 5). The top-ranked data 
sets had substantially higher weights, indicating the presence 
of a strong query-related signal in these data (Supplementary  
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Figure 1 | SEEK system overview and  
systematic functional evaluation. (a) Users  
begin by providing a query gene set of  
interest to define a biological context of  
their search (step 1). SEEK searches the  
entire compendium and returns genes  
that are coexpressed with the query and  
the top relevant data sets (steps 2 and 3).  
The web user interface provides visualizations  
of gene coexpressions across prioritized  
data sets (step 4) and enables users to 
iteratively refine their search (Fig. 2)  
and further analyze the results through 
a condition-specific view (step 5) 
(Supplementary Note 4). (b) Gene-
retrieval evaluations across 995 diverse GO 
biological process terms for the SEEK, MEM, 
Gene Recommender and combined data set 
correlation algorithms (Supplementary  
Note 2). Queries of diverse sizes (2–20 genes)  
were selected randomly among each  
term’s genes to evaluate the precision  
of retrieving the remaining genes in each term. Individual term performances (Supplementary Data 2) and additional detailed comparative  
evaluations (Supplementary Figs. 1 and 2) are provided.

np
g

©
 2

01
5 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.



nature methods  |  VOL.12  NO.3  |  MARCH 2015  |  213

brief communications

Fig. 5), and appeared to be more specific 
to the Hh query than to random queries 
(Supplementary Fig. 6a). These highly 
weighted data sets included results from 
studies of tumors with previously docu-
mented connections to aberrant Hh sig-
naling, such as (i) medulloblastoma, in 
which overactivation of Hh has been  
documented14,15, (ii) human germ cell 
tumors, in which Hh pathway muta-
tions have been linked to aberrant Hh 
activation in human germ cells16, and 
(iii) malignant rhabdoid tumors17,18, 
in which mutations have been found to lead to Hh signaling  
activation18. Thus, SEEK correctly identified data sets relevant 
to the Hh signaling and helped explore the important role of 
the Hh pathway in a wide array of cancer types. The data set  
weighting led to accurate retrieval of other genes in the Hh  
pathway, including those encoding Hh pathway signaling  
receptors and their associated genes SMO, PTCH2, HHIP,  
BOC19, the Cos2 homolog KIF7 (ref. 20) (Fig. 2a and Supplementary  
Fig. 6b) as well as additional genes associated with Hh dysregula-
tion in cancer (Supplementary Note 3).

The SEEK interface can visualize the aforementioned results—
including the top-ranked data sets, genes and coexpression  
profiles—using flexible and interactive visualizations (Fig. 2a). 
The main search result page provides users with the ability to per-
form extensive follow-up analyses, including functional analysis 
of results with a coexpression view that summarizes the query 
and retrieved genes’ coexpression across 50 data sets at a time 
(Supplementary Note 4). Users can also examine the behavior 
of any gene in a given data set in detail through a condition- 
specific view (Fig. 1a), where they can examine associations 
between coexpressed genes and treatments or outcomes on the 
basis of data set metadata. An additional post-search analysis, 
the search refinement function, allows users to iteratively refine 
their search by limiting the scope of the query search to data 

sets of a specific disease or tissue of interest (Fig. 2b). This fea-
ture currently provides customized search over not merely the 
2,685 cancer data sets of various tissue origins but also almost 
2,000 noncancer data sets, including nearly 280 stem cell, over 
100 neurodegenerative disease and 1,400 various immune 
and other cell type related data sets (Supplementary Data 4).  
We plan to regularly update SEEK’s compendium as new microar-
ray and RNA-seq data sets become publicly available.

Methods
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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Figure 2 | Search results for the Hedgehog (Hh) 
query (GLI1, GLI2, PTCH1) and search refinement. 
(a) Data sets prioritized and genes retrieved 
for the query in the main result page, shown in 
expression view. The top-ranked data sets (i) 
and the coexpressed gene list (ii) are indicated. 
Conditions in each data set are hierarchically 
clustered in real time according to the expression 
values of the top genes retrieved from the  
search (iii), and an expression heat map of  
the genes for each data set is provided (iv).  
(b) Illustration of the search refinement function. 
“Refine search” enables users to narrow the 
scope of their search through selection criteria 
including tissue, cell type or disease categories; 
platforms; or rank of data sets from initial search 
(Supplementary Note 4). Top search results after 
limiting the search scope to brain data sets are 
shown. Brain-specific coexpressions are noted  
in this case with higher coexpression scores to 
the query and better groupings of conditions than 
those of the initial search. SEEK also has alternative 
view modes such as coexpression view and 
condition-specific view (Supplementary Note 4).
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ONLINE METHODS
Data preparation and correlation normalization. SEEK assem-
bles its human gene expression compendium by obtaining data 
sets from NCBI’s Gene Expression Omnibus (GEO) database2 
and the Cancer Genome Atlas (TCGA)1. The compendium con-
sists of data sets from 41 platforms including 32 platforms from 
Affymetrix, Agilent and Illumina, and 9 RNA sequencing plat-
forms (Supplementary Data 1). These platforms were chosen on 
the basis of the number of available data sets and the availability 
of raw data to perform consistent processing for each platform. 
The data sets were processed consistently by applying platform-
specific procedures on their raw measurements (Supplementary 
Note 5 and Supplementary Data 5) to remove the systematic  
differences among data sets21. The normalized data sets contain-
ing gene-level expression values can be accessed through the 
SEEK website.

The next step of data processing is calculating the Pearson  
correlations rd(x, y) between all pairs of genes x and y in each data  
set d. As correlation values arising from different genome-wide 
distributions are not directly comparable across data sets, a Fisher 
transform procedure22 is applied to convert the distribution of 
correlations to a normal-like distribution: 

f x y
r x y
r x yd
d

d
( , ) ln

( , )
( , )

=
+
−

1
2

1
1  

where fd(x, y) is the Fisher-transformed score. Then the data are 
translated to z scores for standardization: 

z x y
f

f x y fd
d

d d( , )
( )

[ ( , ) ( )]= −1
std

avg
 

where avg(fd) is the average of fd for all (x, y) pairs, and std(fd) is 
the s.d. of fd.

The normalization procedure has been used in previous  
studies5,23 and has been found successful in transforming most 
correlation distributions that are generated from different plat-
forms and technologies into a comparable normal distribution 
with mean 0 and variance 1 (Supplementary Fig. 8). Note that 
SEEK also works well with other correlation measures, such as 
Spearman and bicor24 (Supplementary Fig. 9). We found that 
the normalized Pearson correlation provides performance better 
or comparable to that of Spearman and bicor in the search set-
ting, likely because the normalization procedure and the SEEK  
algorithm itself reduce the effects of outliers in search perform-
ance (Supplementary Fig. 9).

Search algorithm. The search algorithm takes two inputs:  
(i) a set of query genes Q = {q1, …, qx} and (ii) the set of correla-
tion z scores containing the query zd(g, q) for each data set d in 
the data compendium D, for all genes q in Q and for all genes g in 
the genome G. The outputs of the algorithm are a prioritized list 
of data sets and coexpressed genes relevant to Q.

The search algorithm consists of four steps. The first step is 
to load precomputed z scores of Pearson correlations (in the  
normalization step above) containing the query across D.

The second step is to perform hubbiness correction on each 
data set d. The correction procedure is motivated by the observa-
tion that ‘hubby’9,10 or well-connected genes in the coexpression 
network represent global, well-coexpressed processes25 and can 
contaminate the search results regardless of query composition 
owing to the effect of unbalanced gene connectivity in a scale-
free coexpression network9,10,26–28, which can lead to nonspecific  
results in search or clustering approaches. To avoid the bias  
created by hubby genes that are not related to the user’s query or 
pathway of interest, our method corrects each gene g’s correlation 
to q in each data set d

z g q z g q
G

z g xd d dx G( , ) ( , )
| |

( , )= − ∈∑1

 

where z  is the hubbiness-corrected z score. By subtracting g’s 
average correlation from the correlation of (g, q), we expect the 
resulting score to emphasize g’s coexpression specifically with 
the query rather than its general connectivity. The control of 
coexpression hubbiness enables the detection of specific biologi-
cal signals in the data that would otherwise be swamped by broad 
coexpression patterns of the most well-connected genes.

The third step performs cross-validation–based data set  
weighting. The goal is to rank data sets according to each data 
set’s relevance to the query5. The result will be the first output 
of the search system and will also be used to compute the final  
gene-score vector for the last step. The main idea is to upweight 
data sets where a subset of the query genes can retrieve the 
remaining query genes well on the basis of normalized, hubbiness- 
corrected coexpression in that data set. Thus, it is analogous 
in spirit to the cross-validation procedures commonly used in 
machine learning, where a subset of the standard (in this case, 
query) ‘hides’ from the system to assess how well the method can 
predict these hidden genes.

To describe the weighting method, we first introduce some 
notations. The data set d is implicit in each formula below and 
omitted for brevity; thus z(g, q) is the corrected z score for g to a 
query gene q in Q in data set d. Let Rq = (g(1), g(2), g(3), …, g(r)) be 
the sequence of genes at rank 1, 2, 3, …, r obtained from order-
ing genes by decreasing z(g, q). That is, Rq satisfies: z(g(1), q) ≥  
z(g(2), q) ≥ z(g(3), q)…. Let r(t, Rq) be the rank of gene t in the 
ranking Rq minus 1 (for example, r(g(1), Rq) = 0), and let p < 1 be 
a rate parameter, which we set at 0.99 based on empirical analysis 
(Supplementary Fig. 10). Then the weight w of the data set is 

w
Q

p p
r t Rq

t Q qq Q= −



∈ −∈ ∑∑1

1
| |

( )
( , )

The weighting formula performs cross-validations on q in the set 
Q. The goal is to detect which query genes q can best retrieve the 
remainder query Q − q; such instances of q have a high contribu-
tion to w. We shorten r(t, Rq) in equation (2) to r(t). The exact 
form of this expression for weight (i.e., sum of pr(t)) is inspired by 
rank-biased precision29 and is adapted to our setting to robustly 
measure the effectiveness of the data set in retrieving Q − q. Here,  
p < 1 is the rate parameter in rank-biased precision and is the 

(1)(1)

(2)(2)
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parameter of geometric distribution, as r(t) assumes discrete values.  
When it is employed, pr(t) upweights ranks for genes t in the 
set Q − q that are high in the rank list (i.e., r(t) is small), which 
intuitively emphasizes those genes in the query that are highly 
coexpressed with each other. The measure has the desired prop-
erty of upweighting pairs of query genes that are well correlated 
while not allowing the correlations between the uninformative, 
noncoherent part of the query to affect the weight of the data set 
because the query genes may only be partially coexpressed in a 
given data set. Compared to previous methods5, our method gains 
robustness to heterogeneous query signals because the reward 
on the highly coherent query genes far outweighs the damaging 
effect of a few noncoherent query genes, which are poorly ranked 
relative to other query genes, have high r(t) and have scores pr(t) 
tending to 0.

The last step of the algorithm calculates the final integrated 
gene scores to generate a master ranking of coexpressed genes 
that is the second output of the system (in addition to data set 
relevance weighting). We obtain the gene-to-query score matrix 
MG,D, where the entry Mg,d is the average corrected z score of gene 
g to the query in data set d

M
Q

z g qg d dq Q, | |
( , )= ∈∑1


With the data set weight vector from the previous step w = [w1, 
w2, … ], a simple formulation of the final gene-score vector F is 
given by 

F M w= × = ∈∑G D dd Dw, , /a aT 1

Although previous research had some success with this  
formulation5, our findings show that it works well only in the 
presence of complete gene information with no missing genes 
in MG,D. When there are heterogeneous sources of data in the  
compendium (for example, different microarray and RNA-seq 
platforms), the confounding factor of missing genes and par-
tial gene rankings must be accounted for. Our approach is to  
modify the procedure above by employing threshold parameters 
to exclude a data set from weighting if it does not contain enough 
query genes and to exclude a gene from the final ranking if it is 
not assayed by a sufficient number of data sets in the compendium 
(Supplementary Note 6).

The pseudocode for the entire SEEK search algorithm can be 
found in Supplementary Note 6. The algorithm is robust to query 
composition (Supplementary Figs. 1 and 2) and data set quality, 
including automatically downweighting data sets with substan-
tial batch effects (Supplementary Note 1 and Supplementary  
Fig. 7). Computer source codes are deposited at https://bitbucket.
org/libsleipnir/sleipnir.

For single-gene queries, the search algorithm performs the 
same steps above except that in the data set weighting step, the 
algorithm assigns equal weight to all data sets. Thus, for single-
gene queries, the search system will treat each data set equally and 
retrieve genes that are generally correlated with the query in the 
hubbiness-corrected space. If users wish to perform their single-
gene searches in a tissue-specific or disease-specific manner, they 

can manually define a category of data sets using the extensive 
“Refine Search” interface on the SEEK website, which will restrict 
D in the search system input.

Estimating the significance of gene scores. We estimate a P value 
for each retrieved gene by comparing the integrated score of each 
gene with scores from a pool of 10,000 randomly generated que-
ries with diverse query sizes varying from 1 to 100 genes. The 
random pool allows SEEK to estimate the significance of gene 
score as well as evaluate the specificity of that gene to the query 
genes (as opposed to random queries). For a given gene g and its 
final coexpression score SQ(g) generated from the user’s query Q, 
the P value of g is estimated as the number of random queries R in 
which SR(g) > SQ(g) divided by the random pool size.

Algorithm and interface implementations. The SEEK algorithm 
is implemented in C++ and has been integrated into the open-
source C++ Sleipnir library, enabling other computational users 
to use and expand SEEK without website tie-in30. The back end 
employs the efficient data structures from the Sleipnir library 
to facilitate the process of handling large query sets of over 100 
genes without memory overflow. SEEK’s jobs are parallelized to 
make full use of the multiprocessor resources and their processing 
power. The SEEK web server is constructed with some of the latest 
web technologies including JQuery and Qtip2 libraries. Dynamic 
pages are generated with Java servlets running behind the Apache 
Tomcat server on a Red Hat CentOS Linux operating system. In 
addition, Ajax technology is deployed to send and retrieve data 
from the server asynchronously such that users can receive instant 
feedback on their gene enrichment analysis, expression zoom-in 
function and data set selection module without having to leave 
or refresh the page.

Metadata processing. SEEK categorizes data sets into tissue 
and disease groups by mining the description, title and sample-
level characteristic fields in data sets’ metadata. The text-mining 
procedure utilizes the UMLS MetaThesaurus31 and BRENDA32 
controlled vocabularies to extract predefined concept names that 
are present in the individual fields. To ensure that tissue groups 
are accurate, we manually reviewed annotations to the frequently 
appearing terms generated by text mining. Similarly, we formed 
additional ‘meta’ data set groups, such as cancer and noncancer 
groups and the multitissue profiling group (Supplementary  
Data 4), to provide users with the ability to limit their search to 
such groups under the “Refine Search” feature of the website.

Large-scale functional evaluation setup. We conducted a com-
prehensive evaluation of SEEK in comparison with existing algo-
rithms Gene Recommender, MEM (multi-experiment matrix) and 
combined data set correlation search (Supplementary Note 2).  
We tested each system’s ability to retrieve genes from the same 
biological process given some chosen genes from the process as 
queries. For the evaluation, we partitioned the genes in each of 
the 995 GO biological process terms (Supplementary Data 2)  
into a query building set and a testing set. The query building 
set consists of a random sample of 25 genes from each term if 
the term has more than 40 genes, or else it is made of half of the 
number of genes in the term. Queries were formed by repeat-
edly sampling genes from the set, so that each query size has 

np
g

©
 2

01
5 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.

https://bitbucket.org/libsleipnir/sleipnir
https://bitbucket.org/libsleipnir/sleipnir


doi:10.1038/nmeth.3249 nature methods

ten different queries of that size represented, and we iteratively 
generated queries for sizes 2, 3, 4, … up to Q genes, where  
Q = 0.8|query building set|. The testing set consists of the remain-
ing genes in the term (after subtracting the query building set) and 
is used for evaluating the queries’ retrieval results. A precision-
recall (PR) curve is computed on a per-query basis, averaged over 
all queries of a term and finally averaged over all evaluated terms 
to derive an overall system performance plot for each method. 
Fold improvement of precision over random is calculated at 10% 
recall (FIOR@10%) and uses a random ranking of genes where 
genes’ rank positions are shuffled. By selecting genes randomly 
from each process in building the queries, we mimic the situation 
in which the query genes are functionally related but not well 
coexpressed. By keeping the two sets (query building and testing) 
separate in the evaluation, we can reduce the performance varia-
tion between the queries of the same size within a process.

For building gold-standard GO gene sets used in evaluation, 
we used gene annotations with experimental evidence codes 
(IMP, IGI, IPI, IDA, IEP, EXP) as well as TAS (traceable author  
statement) and NAS (nontraceable author statement). To select 
the GO slim set (Supplementary Data 3) used for studying the 
effect of compendium size, we carefully examined the title and 
description of the GO terms in the context of the GO hierarchy 
and arrived at a nonredundant subset of GO terms that are both 
specific enough to be informative and diverse enough to represent 
the hierarchy; this is similar to the approach in ref. 33.

To evaluate SEEK’s performance as a function of the query size, 
we pooled together previously built biological process queries 
from 995 processes and then binned them by query size (2–20 
genes). We examined three categories of biological processes 

based on the number of annotated genes in each process: 20–40 
genes, 40–100 genes and 100–300 genes. Performance refers  
to the fold improvement of precision over random at 10% 
recall in using each query to retrieve remaining genes from its  
corresponding process.

To evaluate the search system’s robustness to noisy query genes, 
we selected over 1,800 five-gene and ten-gene queries from  
90 KEGG pathways with 50–100 genes per pathway. Each pathway 
had ten queries selected of each query size. We established a ‘no-
noise’ case, where each query was purely made of genes belonging 
to the same KEGG pathway, and a noisy case, where one, two and 
four random genes were respectively added to each query. The 
fraction (FIOR@10% of each noisy query)/(FIOR@10% of the 
corresponding no-noise query) was calculated, where FIOR@10% 
refers to the performance of retrieving KEGG pathway genes 
using the queries.
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