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Abstract

Motivation: Breast cancer consists of multiple distinct tumor subtypes, and results from epigenetic and genetic
aberrations that give rise to distinct transcriptional profiles. Despite previous efforts to understand transcriptional
deregulation through transcription factor networks, the transcriptional mechanisms leading to subtypes of the dis-
ease remain poorly understood.

Results: We used a sophisticated computational search of thousands of expression datasets to define extended sig-
natures of distinct breast cancer subtypes. Using ENCODE ChIP-seq data of surrogate cell lines and motif analysis
we observed that these subtypes are determined by a distinct repertoire of lineage-specific transcription factors.
Furthermore, specific pattern and abundance of copy number and DNA methylation changes at these TFs and tar-
gets, compared to other genes and to normal cells were observed. Overall, distinct transcriptional profiles are linked
to genetic and epigenetic alterations at lineage-specific transcriptional regulators in breast cancer subtypes.

Availability and implementation: The analysis code and data are deposited at https://bitbucket.org/qzhu/breast.cancer.tf/.

Contact: ogt@genomics.princeton.edu or v.n.kristensen@medisin.uio.no

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Tumorigenesis in breast cancer is thought to be the result of a com-
bination of somatic genetic events including copy number altera-
tions (CNA), point mutations and epigenetic alterations such as
DNA methylation (DNAme). In contrast to normal tissue develop-
ment, in tumors somatic mutations accumulate at various points of
the differentiation process, making normal cells acquire properties
of stem cells that turn them into cancer cells. Despite the extensive
generation of molecular data, how these mutations and aberrations
specifically affect transcription factors and their targets is not well
understood.

Breast cancer is a heterogeneous disease comprised of several
molecular subtypes: luminal A, luminal B, Her2, basal-like and
normal-like (Hu et al., 2006; Perou et al., 2000; Sørlie and Perou,
2001). Of these, luminal A and basal-like (hitherto referred to as
basal) are the most extreme in terms of spanning the prognosis and
treatment decision spectrum, with luminal A being ‘best’ prognosis

and basal being the worst. Aberrations in breast cancer are mani-
fested in a subtype-specific manner, and distinct biological processes
are uniquely perturbed in these subtypes (Curtis et al., 2012; Nik-
Zainal et al., 2012). Previous efforts have identified mutational
events at an unprecedented resolution and scale, linking those to the
breast cancer subtypes (Cancer and Atlas, 2012). Because of the dis-
tinct expression profiles, it is thought that the development of cancer
involves the combinatorial effects of transcription factors expressed
in a coordinated manner. Together they evolve downstream of
germ-line and somatic genetic events and subtype-specific regulators
can further give rise to the subtype-specific co-expression of down-
stream target genes.

To study the regulatory effect on transcription, various TF regu-
latory networks have been constructed from ChIP-seq and ChIP-
ChIP data, including a general TF network created by the ENCODE
project (Dunham et al., 2012; Gerstein et al., 2012; Kundaje et al.,
2015), and for breast—a nuclear receptor TF network focused on
MCF7 cells (Kittler et al., 2013). Computational efforts have
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identified master regulators from differentially expressed and coex-
pressed genes (Janky et al., 2014), or from motifs overrepresented in
promoter regions (Joshi et al., 2012; Tongbai et al., 2008). Some
identified transcriptional differences in normal breast development
through histone marks (Pellacani et al., 2016). These previous analy-
ses described a general disease network and have not been breast
cancer subtype-specific. Given that subtypes are strongly linked to
clinical outcome, subtype-specific regulatory networks need to be
identified and effects of genetic and epigenetic aberrations on tran-
scriptional regulators need to be studied further.

Toward this goal, we integrate breast cancer subtype-specific
transcriptomic and cistromic (ChIP-seq) datasets to infer regulators
and targets underlying breast cancer subtypes. We used 152 breast
cancer gene expression datasets adding to a total of 10280 samples,
including TCGA (Cancer and Atlas, 2012), METABRIC (Curtis
et al., 2012) and patient cohort studies, including one by us (Aure
et al., 2013), produced on diverse microarray and RNA-seq plat-
forms, to define subtype-specific genes with a computational search-
based algorithm (Zhu et al., 2015). Then relevant regulators of each
subtype were identified through the enrichment of two evidence at
each subtype’s coexpressed genes: transcription factor (TF) binding
evidence from ENCODE ChIP-seq database (Dunham et al., 2012),
and motif enrichment evidence within regulatory regions (including
TF binding sites and open chromatin regions). Particularly, we
found a set of ChIP’d TFs from ENCODE whose binding sites were
commonly enriched for loci near coexpressed genes that were upre-
gulated in each subtype, implying that the binding of these TFs is
associated in large part with coexpression. Most importantly, we,
for the first time, identify a subtype-specific tendency for the mech-
anism of de-regulation of transcription factors via DNA hypo/hyper
methylation in the best prognosis luminal A, or somatic copy num-
ber aberrations in the worst prognosis basal subtype. Furthermore,
by the integration of ChIP-seq data with expanded coexpressed gene
signatures we derive direct evidence of epithelial-mesenchymal tran-
sition (EMT), and embryonic stemness in the basal subtype, identify-
ing that target genes are decomposed into those belonging to one, or
the other cell lineage, or shared by both lineages (epithelial and stem
cell). Finally, based on this analysis we identify two more cell lines,
A549 and H1-hESC, as associated to the basal subtype in addition
to the known oncogenic MCF10A-Er-Src cell line.

2 Materials and methods

To understand how transcriptional events influence the development
of breast cancer cells, we reverse engineer the process, starting with
coexpressed genes in each luminal A and basal subtype. We used our
computational search algorithm SEEK (Zhu et al., 2015) applied to
152 breast cancer datasets (Supplementary Data S1) to accurately
identify extended subtype-specific gene signatures (ESG)
(Supplementary Table S1 and Supplementary Data S2) based on the
smaller seed lists of published subtype-specific genes (Muggerud
et al., 2006)(Supplementary Table S1). The ESGs were verified to be
differentially expressed between subtypes in the external
METABRIC cohort (Supplementary Tables S2 and S3).

ChIP-seq data processing: We used the collection of ChIP-seq
datasets processed by the ENCODE Analysis Working Group. To
derive a gene score representing the amount of binding per gene, we
first divide the peak signal score (the number of tags) by the 75-per-
centile peak score of the whole experiment, multiplied by base score
500. Next the peaks’ chromosomal locations are aligned to all gene
regions 650 kb TSS using BEDOPS (Neph et al., 2012) and human
hg19. To account for the case when a peak falls within multiple
genes’ region, we calculate each gene score as sum of normalized
contributions of peak scores: g ¼

P
f2PðgÞpðf Þ=nðf Þ where g is the

gene score, f in P(g) is the set of peaks in the vicinity of g, p(f) is the
peak score of f, n(f) is the number of genes f overlaps.

Cell line prioritization for subtypes: we used GORILLA (Eden
et al., 2009) to compute an enrichment of binding at ESGs in each
ChIP-seq experiment that was summarized into gene-based binding
scores. For our purpose, we excluded ChIP-seq of CTCF, Rad21,
Pol2 and histone marks. This produced 503 experiments for

prioritization (Supplementary Data S3 and S4). Then we summar-
ized the results per cell line or cell line group and picked the top cell
lines (Supplementary Fig. S1) as models of basal and luminal A.

Next, we identified potential subtype-specific transcription fac-
tors based on ChIP-seq data and motif and co-expression evidence,
as described below. Detailed steps of TF derivations are in
Supplementary Methods.

ChIP-seq based evidence: given ESGs in a subtype, we sought
ChIP-seq experiments [from ENCODE (Gerstein et al., 2012)]
where the sum of binding intensities at the regulatory regions (50 kb
6 TSS) of ESGs are significantly higher than binding at random sets
of genes. If significance is reached, then ChIP’d TFs are termed regu-
lators of the subtype.

Motif and coexpression based evidence: we performed motif
analyses within peaks of ChIP-seq experiments in relevant cell lines
to search for any motifs that might be enriched, as described previ-
ously (Machanick and Bailey, 2011). We additionally required that
the TF identified via this analysis must be coexpressed to the target
genes, to be considered as a regulator (as a motif often encompasses
a family of TFs).

See Supplementary Figure S1 for a workflow of our analyses.
To reveal associations between identified TFs and CNA or

DNAme, we obtained relevant datasets from the breast cancer co-
hort in TCGA (Cancer and Atlas, 2012) and two other independent
datasets, METABRIC and OSLO2 (Curtis et al., 2012; Fleischer
et al., 2014).

DNA methylation (DNAme) processing: TCGA array-based
DNAme dataset was downloaded from ICGC in nucleotide-
resolution methylation frequencies (beta values). We excluded
blood-derived normal samples, and metastatic samples from the
TCGA list. We used primary tumor samples and also obtained a sep-
arate normal breast tissue sample set from TCGA for comparison.
To start, nucleotide-resolution beta values per patient sample was
summed to gene-level values. Then, to derive subtype-specific hyper-
and hypo-methylated genes, for every gene, we compared the distri-
bution of methylation frequency of subtype patient group and that
of the healthy group consisting of normal breast tissue samples, by
performing 2-sample t-tests with unequal variance with respect to
the normal sample group. Genes with P<0.01 significance are
deemed hyper or hypo-methylated respectively.

Copy number alteration (CNA) processing: For CNA (Curtis et
al and TCGA), original data consists of copy number for various
chromosomal segments detected per patient. Each copy number
ranges from -1 to þ1 (in log scale) which is relative to the normal
copy number. To derive a gene-based copy number, let cna be the
copy number of segment f; len be the number of genes contained in
f; FG(g) be the set of gained fragments containing gene g; FL(g) be
the set of lost fragments containing g. We calculate:

gain gð Þ ¼
X

f2FG gð Þ
cna fð Þ=len fð Þ; where cna fð Þ > 0

loss gð Þ ¼
X

f2FL gð Þ
cna fð Þ=len fð Þ; where cna fð Þ < 0

Then we performed 1-sample t-test to obtain genes significantly
associated with CNA gains and CNA losses for each tumor subtype.

Associations between TFs and deregulations: The rank-based en-
richment test GORILLA (Eden et al., 2009) was used to compute
the enrichment for ESGs near the top of the rank list of genes sorted
by deregulation values. We performed such testing for each CNA
and DNAme deregulation. For our context and for each subtype, we
combine the gain and loss lists and sort genes by the absolute gain or
loss value, giving a rank list of all TFs in genome. Tests that involve
TFs used �1000 TFs as background. Otherwise, tests involving
ESGs used the whole-genome background (�17 000 genes). Q-value
procedure (Storey and Tibshirani, 2003) was applied to correct mul-
tiple comparisons.

TF-TF and TF-target networks: For each ChIP’d TF identified as
associated to a subtype, we use its ChIP-seq experiment to identify
its binding sites in the ESGs. We connect an edge from ChIP’d TF to
a gene in the ESG set if the gene has a higher-than expected peak
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signal. Iterating this procedure for all ChIP’d TFs results in a TF-
target network. TF-TF network results similarly from connecting
the ChIP’d TFs to the TF subset of ESGs. For functional enrichment
analysis, circled TFs in the network form a seed gene list that was
expanded in SEEK, and the top 200 expanded genes were used to
determine enriched GO-terms for the TFs.

Comparisons of basal regions with open chromatin data:
DNase-seq and ATAC-seq were downloaded from ENCODE portal
or GEO for MDA-MB231, human mammary epithelial cells
(HMEC), H1 embryonic stem cells, mesenchymal stem cells (MSC),
A549 and MCF10a-Er-Src cells. Accession IDs were SRR7225842,
ENCSR000ELW, ENCSR731QLJ, ENCSR7940FW, ENCS
R385SZQ and ENCSR000ENV. ENCODE-provided data were al-
ready in narrowPeaks. For MDA-MB231, we processed the data
from raw reads by performing alignment (Langmead and Steven,
2013) and peak calling (Zhang et al., 2015) following standard set-
tings. Peak overlap was computed relative to ChIP-seq experiments.

Decomposition of basal ESGs into lineages: We assigned basal
ESGs to epithelial, mesenchymal and early developmental stem line-
ages using two strategies. (1) ChIP-seq of A549, MCF10a-Er-Src and
H1-hESC. (2) DNase-seq of H1, MSC and HMEC. In (1) experi-
ments of each line form groups that we used to perform a group-
based 2-sample t-test (unequal variance). Groups were epithelial
(A549 and MCF10a-Er-Src) and stem (H1-hESC). This determines
whether each gene is significantly assigned to epithelial or stem lin-
eage. In (2) we used log fold-change between cell lines as each cell
line is just 1 experiment. Hierarchical clustering was performed, and
gene clusters that are specific to each epithelial, stem and mesenchy-
mal were chosen. MSC was used to assign the mesenchymal lineage.

The analysis scripts and data are deposited in Bitbucket https://
bitbucket.org/qzhu/breast.cancer.tf/.

3 Results and discussion

We inferred regulatory TFs of the subtype-specific extended signa-
ture genes (ESGs) from a combination of sources: (i) ChIP-seq
experiments and (ii) motif and coexpression evidence. ChIP-seq
measures experimental binding while motif, coexpression evidence
are designed to expand the scope of inferable TFs from ENCODE
by a search of additional motifs that may be overrepresented in the
regulatory regions of ESGs (Section 2). Additionally, TFs pointed to
by the motifs must be coexpressed with the subtype genes to be
reported as regulators in this study. We first performed a global
ChIP-seq prioritization as per subtype’s ESGs (Supplementary Data
S3 and S4) and identified relevant cell lines of each subtype
(Supplementary Fig. S1).

3.1 Subtype-specific TFs in luminal and basal subtypes
3.1.1 Transcriptional regulators of the luminal A subtype

ChIP-seq based evidence. The unbiased search of ChIP-seq experi-
ments, where the sum of binding intensities at the regulatory regions
of the subtype-specific ESGs were significantly higher than binding
at random genes, identified the three well-known luminal A-associ-
ated TFs: Esr1, Gata3 and Foxa1 (Fig. 1). The ChIP-seq experiments
identifying these TFs came from the MCF7 and T47D cell lines
(Supplementary Fig. S1a), well-accepted models of luminal A biol-
ogy, supporting our analysis and suggesting that the set of TF targets
were subtype-specific (Fig. 1a). In contrast, Gata3, Esr1 and Foxa1
binding was much less significantly enriched in the binding regions
of the basal-like ESGs [e.g. difference in –log10(P value) were 7, 9
and 16 respectively] (Fig. 1a). Other transcription factors with
strong target enrichments in luminal A ESGs, but not with basal-like
ESGs, were Znf217, Elf1, Myc, Foxm1, Max and Tead4 (Fig. 1a).
Altogether, over 20 of the 40 top ChIP-seq experiments
(P<1�10�5) come from MCF7 (Supplementary Data S3), corrob-
orating with the fact that MCF7 is the most appropriate model for
the physiology of luminal A subtype.

Motif and coexpression based evidence: Next, by going beyond
ChIP-seq data, we found additional regulators of the luminal A
ESGs using motif analysis (see Section 2). This returned 16 TFs

(Supplementary Tables S4 and S5) that included Xbp1 (X-box bind-
ing protein), Pgr (progesterone receptor), Ar (androgen receptor), in
addition to the known Foxa1, Esr1, Gata3 for which ChIP-seq data
were also available. All of these factors had binding motifs in the
50 kb regulatory regions of luminal A ESGs.

3.1.2 Transcriptional regulators of the basal subtype

When the same analysis was performed for the basal extended signa-
ture genes, the ChIP-seq data from the ENCODE revealed signifi-
cant enrichment for TF binding for Cfos, Stat3, Myc (of MCF10a-
Er-Src cells, 20 < –log10P < 40), Gr, Fosl2, Tcf12, Atf3 (of A549
cells, 15 < –log10P < 19) and Tead4, Chd1, Jund, Rbbp5, Ctbp2
and several others (of H1-hESC cells, –log10P > 10) (Fig. 1b), sug-
gesting that these TFs are regulators of the basal subtype. As
expected, weak or no enrichment of binding was observed for lu-
minal A ESGs. Additional 23 basal TFs (Supplementary Tables S4
and S5) were identified from expanding the search to include TF
motifs and coexpressed TFs in the basal ESGs. These included
Bcl11a, Id4, En1, Sox9, for which literature evidence supports their
roles in triple-negative breast cancer or as part of the stem cell differ-
entiation program (Adam et al., 2015; Khaled et al., 2015). Among
these, the highly relevant basal Foxq1 is a driver of the TGF-beta
signaling pathway and participates in crosstalk with Wnt signaling
pathway to influence EMT. Overall these results confirm the valid-
ity of the inferred TFs.

Intriguingly, two cell lines, A549 and H1-hESC, were identified
as associated to the basal subtype in addition to the conventional
MCF10a-Er-Src (Supplementary Fig. S1b). This discovery, given the
unbiased nature of our analysis, is interesting as A549 is a cell line
of basal epithelial origin, while the H1-hESC of stem cell origin. The
identification of A549 and H1-hESC as most similar to the basal
subtype of breast cancer based on this analysis may be suggestive of
a hybrid basal subtype state consistent with the known epithelial
and mesenchymal stem cell characteristics of the basal subtype
(Sarrió et al., 2008; Wu et al., 2016). Basal specific TFs are found to
regulate a large set of basal co-expressed genes, using the TF-TF net-
work described next.

3.1.3 Interaction networks between the TF and their targets in the

luminal and basal subtypes

In the next step, we connected the above inferred TFs to the sub-
type’s ESGs based on the evidence for binding. In doing so, we

(a) (b)

Fig. 1. ChIP-seq experiments ranked highest in binding signals at (a) luminal A and

(b) basal extended signature genes (ESGs). Each column indicates one of five ESG

sets being interrogated for strength of binding in the ChIP-seq experiments (rows).

As expected, lumA-relevant ChIP-seq contains significant binding at lumA genes,

but not at basal genes (a)
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created a directed TF-TF binding network (Fig. 2) through which we
analyzed the interactions between these identified TFs and their tar-
gets in the subtype-specific extended signature genes (Fig. 2).
A directed edge from TF A to TF B in this network means that A
binds to B according to ChIP-seq experiment of A in ENCODE data-
base. The ChIP’ed TFs are highlighted in blue, while the TF subset
of the subtype’s co-expressed genes which are targeted by the
ChIP’ed TFs are highlighted in red. TF target genes (red nodes) are
partitioned into groups based on different upstream binding factors,
i.e. the ChIP’ed TFs (blue nodes), according to the distinct biological
processes they are involved in. In addition to this network, we show
an extended TF-target network as a heatmap in Supplementary
Figure S3, including non-TF targets. In the case of luminal A TF net-
work (Fig. 2a), the self- and co-regulatory functions of ESR1,
FOXA1 and GATA3 have been well described (Hurtado et al.,
2011). Further examining the targets of this network
(Supplementary Fig. S3), we found binding sites were enriched near
genes including FOXA1, ESR1, as well as EVL, PREX1, KCTD3,
VAV3 and many others (Supplementary Fig. S3). Among these,
KRT18, SIAH2, TFF1 contain ER-alpha binding sites in distal regu-
latory regions with sites overlap with sites of chromatin interactions
reported in MCF7 ChIA-PET (Fullwood et al., 2009), confirming
their regulatory roles.

Luminal A suggests a simple network that is dominated by estro-
gen response, where the majority of regulators target ESR1 and
FOXA1. In the basal subtype, however, downstream genes (red
nodes) can be seen distinctly partitioned into groups according to
unique partners of upstream factors (blue nodes) (Fig. 2b). These
downstream groups are highly functionally distinct (see biological

process annotations in Supplementary Table S6), and further sug-
gestive of the heterogeneous, dual EMT nature of the basal subtype.
Indeed, the regulatory function of basal TFs partitions direct binding

targets into two groups (Supplementary Fig. S4): those found in 1)
epithelial lineage: ERRFI1, ANXA1, EDN1, MID1; and 2) stem cell

lineage: BCL11A, LPHN2, ROR1, ZNF532, GCNT2, PODXL,
SPRY2, EPHB3. Multiple biological processes in the complex TF-TF
network (Fig. 2b) confirm the hallmark of EMT in the basal subtype

(Wu et al., 2016).
To investigate whether sites indicated by ChIP-seq peaks of

A549 and H1-hESC TFs are active in the basal subtype, we gather
data for open-chromatin regions in a true basal cell line MDA-MB-

231. We compared the peaks of Tead4, Max, Hdac2 ChIP-seq in
H1-hESC (3 of the most enriched experiments for basal ESGs) with
the ATAC-seq of MDA-MB-231. Pooled peaks of these TFs repre-

sent 45% of all open-chromatin peaks in MDA-MB-231
(Supplementary Table S7). For A549, ChIP-seq peaks of Cebpb,
Fosl2, Tcf12 together recover 40% of peaks in ATAC-seq; for

MCF10a-Er-Src it is over 55% (Supplementary Table S7). Overall,
these results suggest that there are shared regulatory programs and

regions between A549, embryonic cell lines and the basal subtype.

3.1.4 Extended analysis of EMT and stemness in the basal breast

cancer

The basal ESGs contain vimentin (VIM, coexpression P¼0.0351),
c-Met oncogene (MET, P¼0.0071), FOXQ1 (P¼0.0008) which

are EMT hallmarks and regulators. We examined a public Zeb1
ChIP-seq sample (GSM2360622) to ask how basal ESGs are tar-

geted by Zeb1, which represses E-cadherin and is a key inducer of
EMT. Indeed, basal ESGs are significantly enriched in Zeb1 targets
(P¼7.67�10�29). We hypothesize that the basal subtype contains

mixed cell states and populations marked by the distinct expression
of lineage-specific genes for multiple lineages. To this end, we de-

compose basal ESGs (also a mixture of genes) into those belonging
to one, or the other cell lineage, or both lineages (epithelial and stem
cell) (Supplementary Figs S4 and S5). We focus on a subset of 265

ESGs that have substantial genome-wide TF binding. We used two
approaches. First, TF ChIP-seq experiments may divide the basal

ESGs based on differential TF binding at these genes in epithelial
(A549, MCF10a-Er-Src) and stem cells (H1-hESC). We note that
79, and 95 genes have TF binding uniquely associated with epithelial

(P<0.05), and embryonic stem lineage (P<0.05) respectively
(Supplementary Fig. S4). 91 genes cannot be distinguished between
the two (Supplementary Fig. S4). Second, the same ESGs were

decomposed based on open chromatin peaks in DNase I hypersensi-
tivity sequencing data in HMEC, MSC and H1-hESC cells

(Supplementary Fig. S5a). Overlap of the two approaches show 44
embryonic stem, 25 epithelial and 15 mesenchymal genes within the
basal ESGs (Supplementary Fig. S5b). These groups participate in

specific biological functions according to the GO-term analysis
(Supplementary Fig. S5c).

3.1.5 siRNA, knockout experiments of BCL11A, CTBP2, REST,

FOXA1 support the regulation of ESGs

To experimentally verify that these identified TFs indeed regulate
ESGs, we obtained public transcriptomic datasets from TF knockout
and siRNA conditions for 4 TFs from basal and luminal A regulator

lists: BCL11A, CTBP2, REST, and, FOXA1. For each of the luminal
A and basal subtypes we found that a greater proportion of subtype-

specific genes and subtype-specific TFs are perturbed (i.e. fold-
change>1.5) upon TF knockdown or knockout, when compared to
a random set of genes of matched size (Supplementary Fig. S6).

Overall this suggests that the regulators identified computationally
exert an effect on the subtype-specific target genes also in experi-
mental setting.

Fig. 2. Luminal A (a) and basal (b) TF-TF network. A directed edge from TF A to

TF B means that A binds to B according to ChIP-seq experiment of A in ENCODE

database. Blue nodes: ChIP’ed TFs. Red nodes: the TF subset of the subtype’s ESGs

which are targeted by the ChIP’ed TFs. TF target genes (red nodes) are partitioned

into groups based on different upstream binding factors (blue nodes), and are

involved in distinct biological processes (circled and process names in red). In add-

ition to this network, we show an extended TF-target network as a heatmap in

Supplementary Figures S3 and S4
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3.2 Tendencies of TFs to reside in regions affected by

CNA and DNAme suggest distinct mechanisms of

dysregulations for subtypes
Development of cancer involves dysregulation at multiple levels,
including changes to the DNA, such as somatic CNA and aberrant
promoter DNAme. We therefore assessed whether in the different
breast cancer subtypes the sets of cancer subtype-specific TFs
described here, were more often subjected to genetic (CNA) and/or
epigenetic (DNAme) aberrations than random sets of TFs. To ad-
dress this, we used data from 700 breast tumors with subtype-
specific DNAme, and CNA data from TCGA and METABRIC. We
summarized aberrations on a gene-level to facilitate comparisons
with the ESGs, and tested the relevance of each type of subtype-
specific aberration (CNA, DNAme) on the subtype-specific
regulators.

3.2.1 Groups of TFs and targets are distinctly associated with

subtype-specific breast cancer aberrations including DNAme, CNA

Our results (Table 1) indicate that the groups of subtype-specific
TFs identified by our method are more likely perturbed by different
cancer aberrations than expected for random TFs. In luminal A
tumors, luminal A TFs and their targeted genes are significantly dys-
regulated by DNAme (see TCGA and Fleischer et al. in Table 1) and
to a much less extent by CNA (see TCGA, Curtis et al. in Table 1)
(note that Curtis et al. and Fleischer et al. are external cohorts pro-
vided in addition to TCGA). In the basal subtype, basal TFs and
their targeted genes are dysregulated by CNA (see TCGA, Curtis et
al. in Table 2), but not by DNAme (see TCGA, Fleischer et al. in
Table 1). Patterns of CNA (Supplementary Fig. S7b) support this ob-
servation. The results reflect distinct mechanisms of dysregulation
depending on the subtype examined with a distinct pattern of CNA
targeting of basal TFs in the basal subpopulation.

Patterns of DNAme dysregulation at the individual TF level are
particularly subtype-specific (Supplementary Fig. S7a). For example,
we located a subset of TFs containing stem cell differentiation fac-
tors SOX9, EN1, GRHL1, FOXC1, ETS2, ETV6 which are hypo-
methylated in basal tumors and hypermethylated in luminal A
tumors (Supplementary Fig. S7b). Such factors in hyper/hypomethy-
lation states possibly suggest that stem-like properties are effectively
suppressed in the non-basal subtypes through DNAme. On the other
hand, luminal A TFs are characterized by hypomethylation in lumin-
al A/B tumors (Supplementary Fig. S7a). Evidence of hypomethyla-
tion marks is noted at GATA3, BHLHE40, ZBTB42, SPDEF, TOX3
in luminal A patients and not in basal (Supplementary Fig. S7a).
Importantly, CpGs located within Foxa1 ChIP-seq peaks near lu-
minal A targets have clear lower methylation than normal and basal
groups (Supplementary Fig. S8), suggesting distinct methylation may
facilitate the usage of TF binding region in a subtype specific man-
ner. Thus, differential DNAme at TFs plays a critical role in main-
taining luminal progenitor states in luminal cancers and epithelial
and stem cell states in basal cancers.

4 Conclusion

This study demonstrates that each subtype is regulated by a unique
repertoire of TFs, and that these subtypes differ by the unique

combinations of TFs, switching of binding sites and binding part-
ners. Therefore, forces that deregulate this transcriptional network,
through mechanisms of CNA or DNAme of the TFs and their tar-
gets, are plausible causes of how subtypes arise. Understanding the
interplay between DNAme and CNA will lead to a better under-
standing of how subtypes arise. The groups of TFs and their targets
described here revealed an unexpected tendency to copy number
aberrations and DNAme, suggesting that distinctive mechanisms
underlie transcriptional regulation. Importantly, luminal A TFs
tended toward DNA hypomethylation in luminal cancers while
basal TFs tended toward CNA gains/losses in basal cancers.
Consistent with the latter finding, basal breast cancer cells accumu-
late a large number of CNAs, which cause genomic instability
(Weigman et al., 2012), and exhibit highly dynamic and complex
phenotypes. In luminal A cancer, the hypomethylation enhances the
commitment of luminal lineage at key lineage-specific markers
(GATA3, ESR1, FOXA1). Moreover, hypomethylation largely
extends to the TF binding regions and enhancers of these lineage
markers (Fleischer et al., 2017), suggesting a mechanism by which
DNAme may control gene expression by interfering with transcrip-
tion factor binding.

In contrast to luminal A, the TFs driving the basal subtype have
remained largely unknown. For this reason there are no ChIP-seq
data for ER negative breast cancer cell lines either. Here we report
A549, H1-hESC, MCF10a-Er-Src (prioritized from cell lines of 503
ENCODE ChIP-seq) could be used to derive a list of TFs connected
in gene regulatory networks in the basal subtype, delineating TFs
and their targets and show that they are related to the EMT process
and stemness property. The specific TFs and regulatory targets in
the basal subtype are first reported here. We have been able to divide
these genes as belonging to one of distinct lineages (epithelial, mes-
enchymal and stem cell) through our network, and summarized TF
binding and open chromatin regions.

Applying the combined ChIP-seq/SEEK method also enabled to
decompose the heterogeneity among the basal extended signature
genes. These genes, otherwise indistinguishable due to their coex-
pression, have been thanks to the TF binding analysis decomposed
into genes belonging to epithelial and to stem cell lineages by the use
of A549 and H1-hESC ChIP-seq experiments. A549 and H1-hESC
cell lines resemble cell populations in the basal subtype. Of note,
H1-hESC is an embryonic cell line. The embryonic stem cell popula-
tion may be related to the fetal mammary stem cells reported prior
(Wahl and Spike, 2017), which are also effectively ER–, PR– and
Her2 low, same as in basal-like breast cancer. Overall, the similarity
to these two cell lines shows that there are at least two subpopula-
tions in the basal tumors which are associated with embryonic stem-
ness, epithelial and mesenchymal transitional process. Thus, using
ENCODE ChIP-seq samples from a diverse panel of cell lines
enabled us to postulate unique tumor cell types located within the
heterogeneous basal subtype.
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Table 1. Significance of accumulation of CNA, DNAme at luminal and basal TFsb

Dataset Type Basal TFs in basal

tumors (Q-val)

Basal targetsa in basal

tumors (Q-val)

LumA TFs in lumA

tumors (Q-val)

LumA targetsa in lumA

tumors (Q-val)

TCGA CNA 0.00214 0.00195 0.04 0.023

Curtis et al. CNA 0.00534 0.00018 0.015 0.085

TCGA DNAme 0.569 0.296 0.022 0.00013

Fleischer et al. DNAme 0.3109 0.0939 0.0153 0.00011

aGenes that overlap between ChIP-seq targets, extended signature genes.
bShaded regions indicate consistent patterns of dysregulation across cohorts.
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